Diese Website unterstützt Internet Explorer 11 nicht mehr. Bitte nutzen Sie zur besseren Ansicht und Bedienbarkeit einen aktuelleren Browser wie z.B. Firefox, Chrome

Javier Palma Guerrero

Arbeitsgebiete

  • Alternative Strategien zur Bekämpfung von Pflanzenpathogenen
  • Phytopathologie
  • Molekularbiologie
  • Natürliche antimykotische Verbindungen
  • Biokontrolle

Ausbildung / beruflicher Werdegang

  • Seit 2023 Senior Scientist am FiBL Schweiz
  • 2022 - 2023 Wissenschaftlicher Koordinator des europäischen Projekts «Biodiversity Genomics Europe», Institut für Evolutionsbiologie, Spanien
  • 2020 - 2022 Gruppenleiter bei Rothamsted Research, Vereinigtes Königreich
  • 2014 - 2020 Gruppenleiter an der ETH Zürich
  • 2010 - 2014 Postdoc-Forscher an der Universität von Kalifornien, Berkeley, USA
  • 2004 - 2009 Doktorand in der Gruppe für Pflanzenpathologie. Universität Alicante, Spanien

Publikationen

Publikationen in der Datenbank Organic Eprints

Nicht in der Datenbank Organic Eprints erfasste Publikationen

  • Francisco C.S., McDonald B.A., Palma-Guerrero J. (2023): A transcription factor and a phosphatase regulate temperature-dependent morphogenesis in the fungal plant pathogen Zymoseptoria tritici. Fungal Genetics and Biology 167, 103811.
  • Palma-Guerrero J., Chancellor T., Spong J., Canning G., Hammond J., McMillan V., Hammond-Kosack K.E. (2021): Take-all disease: new insights into an important wheat root pathogen. Trends in Plant Science 26 (8), 836-848.
  • Zhong Z., McDonald B.A., Palma-Guerrero J. (2021): Tolerance to oxidative stress is associated with both oxidative stress response and inherent growth in a fungal wheat pathogen. Genetics 217 (2), iyaa022.
  • Francisco C.S., Zwyssig M.M., McDonald B.A., Palma-Guerrero J. (2020): The role of vegetative cell fusions in the development and asexual reproduction of the wheat fungal pathogen Zymoseptoria tritici. BMC Biology 18 (1), 1-16.
  • Ma X., Wiedmer J., Palma-Guerrero J. (2020): Small RNA bidirectional crosstalk during the interaction between wheat and Zymoseptoria tritici. Frontiers in Plant Science 10, 1669.
  • Gonçalves A.P., Heller J., Span E.A., Rosenfield G., Do H.P., Palma-Guerrero J., Requena N., Marletta M.A., Glass N.L. (2019). Allorecognition upon fungal cell-cell contact determines social cooperation and impacts the acquisition of multicellularity. Current Biology 29 (18), 3006-3017.
  • Francisco C.S., Ma X., Zwyssig M.M., McDonald B.A., Palma-Guerrero J. (2019): Morphological changes in response to environmental stresses in the fungal plant pathogen Zymoseptoria tritici. Scientific Reports 9, 9642.
  • Ma X., Keller B., McDonald B.A., Palma-Guerrero J., Wicker T. (2018): Comparative Transcriptomics Reveals How Wheat Responds to Infection by Zymoseptoria tritici. Molecular Plant-Microbe Interactions 31 (4), 420-431.
  • Stewart E.L., Croll D., Lendenmann M.H., Sanchez-Vallet A., Hartmann F.E., Palma-Guerrero J., Ma X., McDonald B.A. (2018). Quantitative trait locus mapping reveals complex genetic architecture of quantitative virulence in the wheat pathogen Zymoseptoria tritici Molecular Plant Pathology 19 (1), 201-226.
  • Zhong Z., Marcel T.C., Hartmann F.E., Ma X., Plissonneau C., Zala M., Ducasse A., Confais J., Compain J., Lapalu N., Amselem J., McDonald B.A., Croll D., Palma-Guerrero J. (2017): A small secreted protein in Zymoseptoria tritici is responsible for avirulence on wheat cultivars carrying the Stb6 resistance gene New Phytologist, 214 (2), 619-631.
  • Palma-Guerrero J., Ma X., Torriani S.F.F., Zala M., Francisco C.S., Hartmann F.E., Croll D., McDonald B.A. (2017). Comparative transcriptome analyses in Zymoseptoria tritici reveal significant differences in gene expression among strains during plant infection. Molecular Plant-Microbe Interactions 30 (3), 231-244.
  • Palma‐Guerrero J., Torriani S.F.F., Zala M., Carter D., Courbot M., Rudd J.J., McDonald B.A., Croll D. (2016). Comparative transcriptomic analyses of Zymoseptoria tritici strains show complex lifestyle transitions and intraspecific variability in transcription profiles. Molecular Plant Pathology 17 (6), 845-859.
  • Lendenmann M.H., Croll D., Palma-Guerrero J., Stewart E.L., McDonald B.A. (2016). QTL mapping of temperature sensitivity reveals candidate genes for thermal adaptation and growth morphology in the plant pathogenic fungus Zymoseptoria tritici. Heredity 116 (4), 384-394.
  • Lopez-Moya F., Kowbel D., Nueda M.J., Palma-Guerrero J., Glass N.L., Lopez-Llorca L.V. (2016): Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan. Molecular Biosystems 12 (2), 391-403.
  • Palma-Guerrero J., Zhao J., Gonçalves P., Starr T.L., Glass N.L. (2015): Identification and characterization of LFD-2, a predicted fringe protein required for membrane integrity during cell fusion in Neurospora crassa. Eukaryotic Cell 14 (3), 265-277.
  • Palma-Guerrero J., Leeder A.C., Welch J., Glass N.L. (2014): Identification and characterization of LFD1, a novel protein involved in membrane merger during cell fusion in Neurospora crassa. Molecular Microbiology 92 (1), 164-182.
  • Palma-Guerrero J., Hall C.R., Kowbel D., Welch J., Taylor JW., Brem RB, Glass N.L. (2013): Genome wide association identifies novel loci involved in fungal communication. Plos Genetics 9 (8), e1003669.
  • Simonin, A., Palma-Guerrero J., Fricker M., Glass N.L. (2012): Physiological significance of network organization in fungi. Eukaryotic Cell 11 (11), 1345-1352.
  • Leeder A.C., Palma-Guerrero J., Glass N.L. (2011): The social network: deciphering fungal language. Nature Reviews Microbiology 9 (6), 440-451.
  • Palma-Guerrero J., Larriba E., Güerri-Agullo, Jansson H-B., Salinas J., Lopez-Llorca L.V., (2010): Chitosan increases conidiation in fungal pathogens of invertebrates. Applied microbiology and biotechnology 87, 2237-2245.
  • Palma-Guerrero J., Gomez-Vidal S., Tikhonov V.E., Salinas J., Jansson H-B., Lopez-Llorca L.V. (2010): Comparative análisis of extracelular proteins from Pochonia chlamydosporia grown with chitosan or chitin as main carbon and nitrogen sources. Enzyme and Microbial Technology 46 (7), 568-574.
  • Palma-Guerrero J., Lopez-Jimenez J.A., Perez-Berna A.J., IC Huang, Jansson H-B., Salinas J., Villalain J., Read N.D., Lopez-Llorca L.V. (2009): Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Molecular Microbiology 75 (4), 1021-1032.
  • Palma-Guerrero J., IC Huang, Jansson H-B., Salinas J., Lopez-Llorca L.V., Read N.D. (2009): Chitosan permeabilizes the plasma membrane and kills cells of Neurospora crassa in an energy dependent manner. Fungal Genetics and Biology 46 (8), 585-594.
  • Palma-Guerrero J., Jansson H-B., Salinas J., Lopez-Llorca L.V. (2008): Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. Journal of Applied Microbiology 104 (2), 541-553.
  • Tikhonov V.E., Stepnova E.A., Babak V.G., Yamskov I.A., Palma-Guerrero J., Jansson H-B., Lopez-Llorca L.V., Salinas J., Gerasimenko D.V., Avdienko I.D., Varlamov V.P. (2006): Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2 (3)-(dodec-2-enyl) succinoyl/-derivatives. Carbohydrate Polymers 64 (1), 66-72.
  • Abdulla S.K., Asensio L., Monfort E., Gomez-Vidal S., Palma‐Guerrero, J., Salinas J., Lopez-Llorca L.V.,  Jansson H-B., Guarro J. (2005): Occurrence in Elx, SE Spain of Inflorescence Rot Disease of Date Palms Caused by Mauginiella scaettae. Journal of Phytopathology 153 (7-8), 417-422.