Hintergrund DOK

Foliensammlung

Hintergrund DOK

Links

DOK-Versuch (FiBL Website)

Film DOK-Versuch (SWR): «Input/Output von Bio und konventionell im Vergleich»

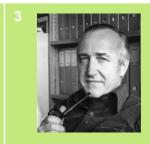
Film «Der DOK-Versuch: Ein Juwel für die Bodenforschung»

Film «DOK-Versuch: Biologische und konventionelle Landwirtschaft im Langzeitvergleich»

Weltweit einzigartiger Langzeit-Feldversuch

DOK-Versuch: weltweit bedeutendste Langzeit-Feldversuch zum Vergleich biologischer und konventioneller Anbausysteme

- > seit 1978
- praxisnahes Versuchsdesign am selben Standort
- biologisch-dynamisch (D), organisch-biologisch (O), konventionell (K)
- konventionelles, rein mineralisches Verfahren (M)
- ungedüngte Variante (N)
- > Ackerkulturen wie Weizen, Kartoffeln, Mais, Soja oder Kleegras


Anbausysteme des Versuchs unterscheiden sich vor allem bezüglich Düngung und Pflanzenschutz

Fruchtfolge, Bodenbearbeitung, Sortenwahl bei allen Verfahren gleich

Praxis, Wissenschaft und Politik

Initiative für Systemvergleich

- > Pioniere des Biolandbaus (*Hardy Vogtmann ¹, Fritz Baumgartner ²*)
- > Forscher der ETH (*Philippe Matile* ³) und FAC (*Jean Marc Besson* ⁴)
- > Verhandlungen im Nationalrat (Heinrich Schalcher 5)

Agroscope (FAC Liebefeld) und FiBL 1973 mit Planung und Ausführung des DOK-Versuchs beauftragt

Ziel: Ist Bio überhaupt machbar?

Seit 1990er Jahren biologische Parameter der Bodenqualität ermittelt

Die wichtigsten Ergebnisse in Kürze 1

Ertragsniveau

 Bio 20 % niedriger als konventionell (bei 65 % weniger mineralischem Stickstoff, 40 % weniger Phosphor, 45 % weniger Kalium)

Langjährige Bilanz von Nährstoffzufuhr und -entzug

- > Negative Nährstoffbilanz für alle Verfahren
- Bio für Phosphor und Kalium noch stärker negativ als konventionell

Energieverbrauch

- Bio 30-50 % weniger Verbrauch (bezogen auf die Fläche)
- Bio 19 % weniger Verbrauch (pro Ertragseinheit; Energie zur Herstellung von Düngern/Pestiziden mit eingerechnet)

Gehalt an organischer Substanz (Humus)

- Abnehmend in allen Verfahren
- Bei biodynamisch die ersten 21 Jahre stabil
- Signifikante Differenz zwischen biodynamisch und mineralisch

Die wichtigsten Ergebnisse in Kürze 2

Bodenqualität

- chemische, physikalische und biologische Parameter der Bodenqualität durch biologische Verfahren verbessert
- > Bodenfruchtbarkeit und Bodenbiodiversität in biologischen Verfahren höher

Biodiversität

 Biodiversität in biologischen Verfahren höher (Regenwürmer, Insekten, Beikräuter, Mykorrhizapilze)

Systemansatz und Fragestellungen

DOK-Versuch ist nicht statisch, sondern semistatisch/dynamisch

- > Hauptverfahren (D, O, K, M, N) über Jahrzehnte gleich gehalten
- Anpassung an neueste Entwicklungen in der Produktionstechnik der jeweiligen Systeme (Fruchtfolge, Pflanzenschutz, Sortenwahl, Gründüngungen) nach jeder Fruchtfolgeperiode alle sieben Jahre

DOK-Versuch folgt integrativem Systemansatz. Es werden nicht einzelne Faktoren, sondern Landwirtschaftssysteme verglichen.

biologischer Landbau als Gesamtsystem (ist mehr als die Summe seiner Teile)

Fragestellungen des DOK-Versuchs haben sich verändert.

- Ursprünglich: Funktioniert Biolandbau? (u.a. Interesse an den Erträgen)
- Zunehmend: Ausweitung auf zentrale ökologische Fragestellungen und Bodenprozesse

Aktuelle Forschungsthemen

Agronomische, ökologische und ökonomische Leistungsfähigkeit des Anbausystems

- Lebens- und Futtermittelqualität
- Stabilität der Produktion über lange Zeiträume
- Ressourceneffizienz (Energie und N\u00e4hrstoffe)

Nährstoff- und Energiekreisläufe

- Wurzel-Bodeninteraktionen (z.B. Rhizodeposition)
- Nährstofftransformation (Mikrobielle Prozesse)
- > Selbstregulierungsprozesse (z.B. Kontrolle von bodenbürtigen Schaderregern)
- Populationen denitrifizierender Mikroorganismen (NFP 68)

Auswirkungen neuer Techniken auf die Bodenqualität

- Biocontrol-Organismen (z.B. Bakterien zur Unterdrückung von Wurzelkrankheiten)
- Neue Züchtungen (z.B. konventionelle/biologische Weizensorten)

Aktuelle Forschungsthemen

Methodenentwicklung (neue Methoden prüfen)

- > Bodenbiodiversität
- > Protein-und Aminosäurezusammensetzung (von Lebens-, Futtermitteln)
- Degustation von Weizen aus dem DOK-Versuch
- Bildschaffende Methoden (Johannes Kahl)

Klima

- Boden als Kohlenstoff-Speicher
- Boden als Quelle von Treibhausgasen
 (Treibhausgasquellen und -senken in Landwirtschaftsböden der Schweiz)

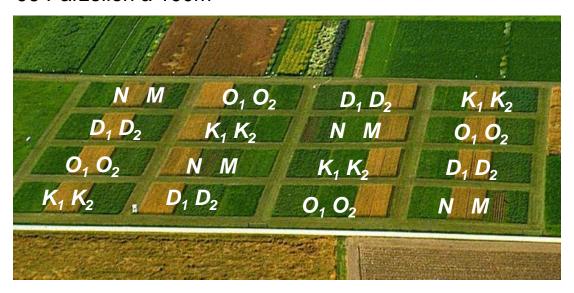
Forschung am DOK

Allgemein

- > Bisher mehr als 200 Publikationen aus dem DOK-Versuch
- Gegenwärtig mehrere Doktorarbeiten aus Projekten des Nationalen Forschungsprogramm NFP68
- DOK wird genutzt von zahlreichen EU-Projekten
- DOK wurde vom Bund aufgenommen in die Liste der national bedeutsamen Forschungsinfrastrukturen

Die Versuchsanlage – detaillierte Informationen

Standortbedingungen


- Versuchsstandort: Leimental bei Basel auf 300m ü. M.
- > Jahresmitteltemperatur 9.5°C, Jahresniederschlag 792mm
- Boden: schwach pseudovergleyte Parabraunerde auf Löss

randomisierte Blockanlage mit vier Wiederholungen

- 96 Parzellen von je 100m² (5 x 20m)
- jeweils drei Feldfrüchte der insgesamt siebenjährigen Fruchtfolge pro Jahr
- jeweils zwei Düngungsstufen (D1/D2, O1/O2, K1/K2)
- konventionelles, rein mineralisches Verfahren M (nur Düngungsstufe 2)
- ungedüngte Variante (N)
- erste Düngungsstufe: 0.7 DGVE/ha
- > zweite Düngungsstufe: 1,4 DGVE/ha (praxisüblich, seit 1991)
- K1, K2, M seit 1985 gemäss Anforderungen ÖLN

Die Versuchsanordnung

- 8 Verfahren
- 3 Kulturen je Jahr
- 4 Wiederholungen
- 96 Parzellen à 100m²

Fruchtfolge

Mais

Soja (Gründüngung)

Winterweizen (Gründüngung)

Kartoffeln

Winterweizen

Kunstwiese

Kunstwiese

D_{1,2}: bio-dynamisch

O_{1,2}: bio-organisch

K_{1,2}: konventionell

M: konventionell, mineralisch

N: ungedüngt

1: erste Düngungsstufe: 0.7 DGVE/ha

2: zweite Düngungsstufe: 1.4 DGVE/ha

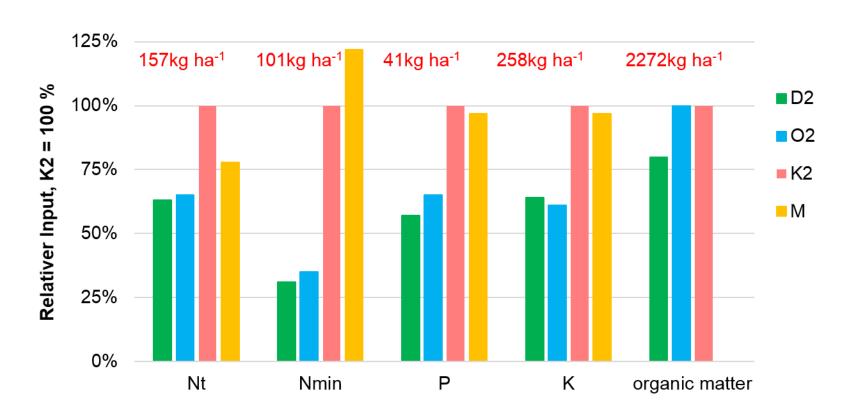
K erhält zusätzlich zu Mist und Gülle

Mineraldünger

Die Verfahren

Verfahren	ungedüngt	Biologisch- dynamisch		Biologisch- organisch		Konventionell (IP)		Mineralisch (IP)
	N	D1	D2*	O1	O2*	K1	K2*	M*
(englisch)		BIODYN		BIOORG		CONFYM		CONMIN
Düngung								
Hofdünger	-	Mistkompost, Gülle		Rottemist, belüftete Gülle		Stapelmist, Gülle		-
DGVE	-	0.7	1.4	0.7	1.4	0.7	1.4	-
Mineraldünger	-	-		Gesteinsmehl, Kalimagnesia		Ergänzende NPK- Dünger		Nur NPK- Mineraldünger
Pflanzenschutz								
Unkräuter	mechanisch	Mechanisch			Mechanisch und chemisch			
Krankheiten	vorbeugend	Vorbeugende Massnahmen			Chemisch (nach Schadschwelle)			
Schädlinge	Pflanzen- extrakte, Antagonisten	Pflanzenextrakte, Antagonisten			Chemisch (nach Schadschwelle)			
Spezielles	Bio-dyn. Präparate	Bio-dyn. Präparate		Halmverkürzer				

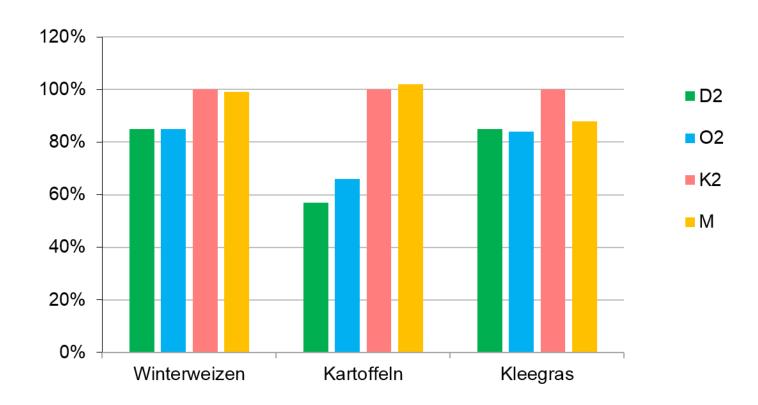
^{*} praxisübliche Düngung


DOK-VersuchDie Fruchtfolge

Jahr	1. FFP 1978-1984	2. FFP 1985-1991	3. FFP 1992-1998	4. FFP 1999-2005	5. FFP 2006-2012	6. FFP 2013-2019
1	Kartoffeln Gründüngung	Kartoffeln Gründüngung	Kartoffeln	Kartoffeln	Silomais	Silomais
2	Winterweizen 1 Zwischenfutter	Winterweizen 1 Zwischenfutter	Winterweizen 1 Zwischenfutter	Winterweizen 1 Gründüngung	Winterweizen 1 Gründüngung	Soja Gründüngung
3	Weisskohl	Randen	Randen	Soja Gründüngung	Soja Gründüngung	Winterweizen 1 Gründüngung
4	Winterweizen 2	Winterweizen 2	Winterweizen 2	Silomais	Kartoffeln	Kartoffeln
5	Wintergerste	Wintergerste	Kunstwiese I	Winterweizen 2	Winterweizen 2	Winterweizen 2
6	Kunstwiese I	Kunstwiese I	Kunstwiese II	Kunstwiese I	Kunstwiese I	Kunstwiese I
7	Kunstwiese II	Kunstwiese II	Kunstwiese III	Kunstwiese II	Kunstwiese II	Kunstwiese II

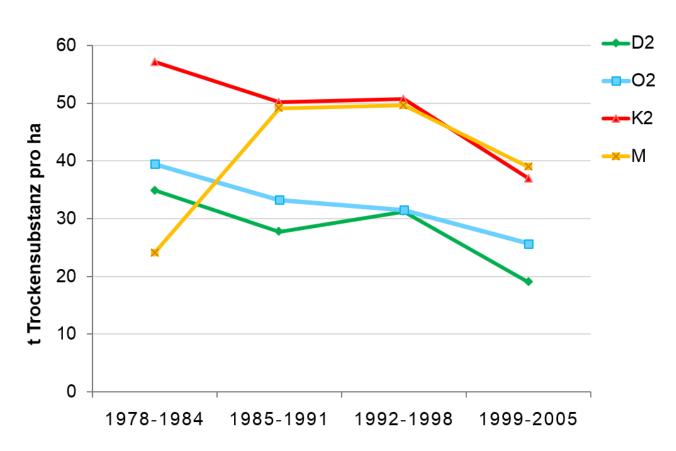
Die Nährstoffe

DOK: durchschnittlicher Nährstoff-Input 1978-2005


Quelle: Mäder et al., 2006, ISOFAR

Überblick

Relativer Ertrag 1978-1998 (K = 100%)


Quelle: Jossi et al., 2009

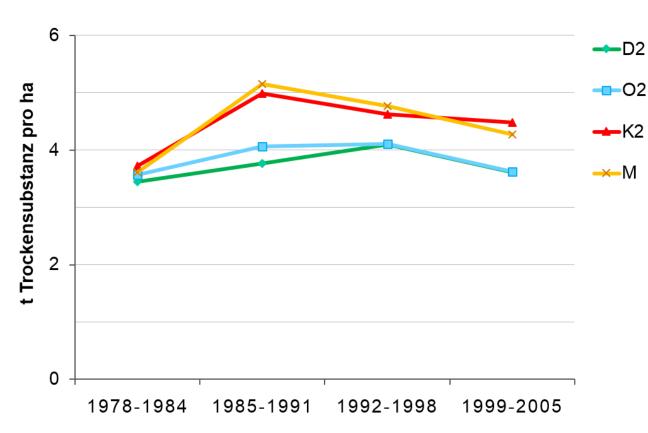
Kartoffeln

DOK: Erträge Kartoffeln 1978-2005

Quelle: FiBL

Bio im Durchschnitt 40% weniger Ertrag

Gründe: hoher Nährstoffbedarf bei kurzer Kulturdauer, hohe Krankheitsanfälligkeit

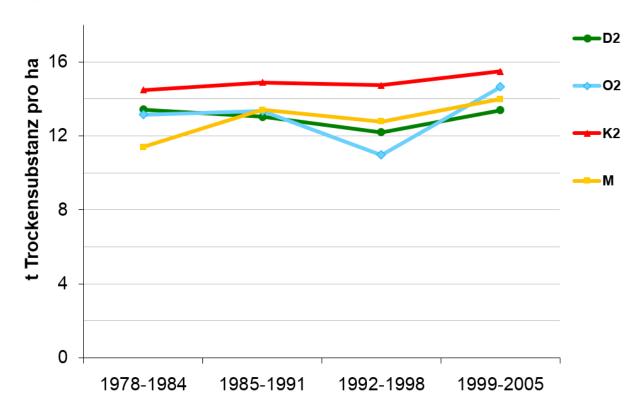

M in 1. FFP ungedüngt

Seit 1998 Abnahme

Winterweizen

DOK: Erträge Winterweizen 1978-2005

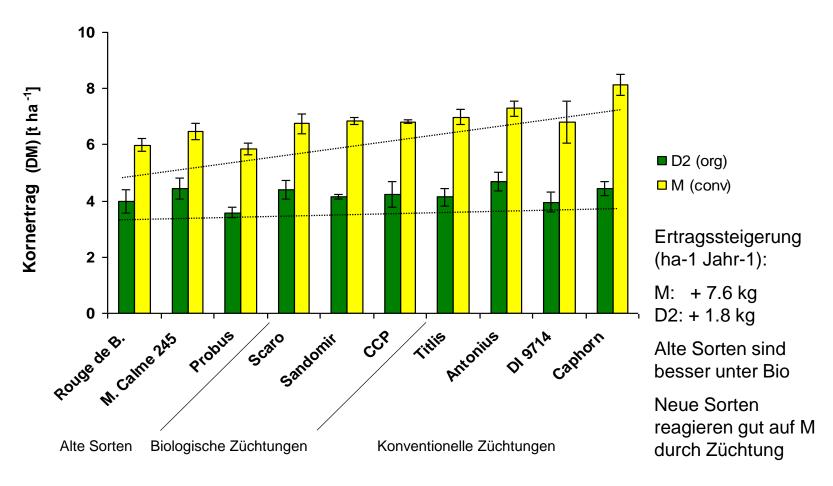
Quelle: FiBL


Weizen stabil Bio im **Durchschnitt**

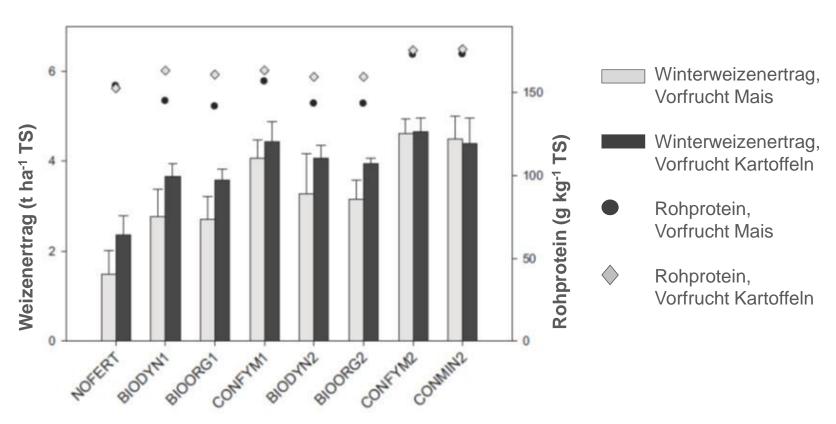
22% weniger Ertrag

Kleegras

DOK: Erträge Kleegras 1978-2005 im 1. und 2. Hauptnutzungsjahr

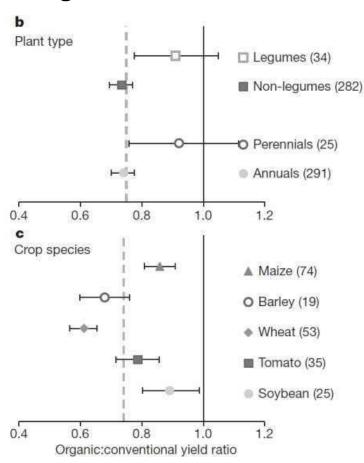

Quelle: FiBL

Relativ stabile Erträge Über alle Verfahren kaum


Weizenerträge unterschiedlicher Sorten

Quelle: Hildermann et al., 2009

Wirkungen unterschiedlicher Vorfrüchte


Winterweizenertrag und Rohproteingehalt nach Mais und Kartoffeln Mittelwert und Standardabweichung (n=4) von 2003 und 2010

Quelle: Mayer et al. EJA, 2015

Ertragsunterschiede Bio - Konventionell

Ertragsunterschiede zwischen Bio und Konventionell weltweit

Quelle: Seufert et al., 2012, Nature 485

Zusammenfassung

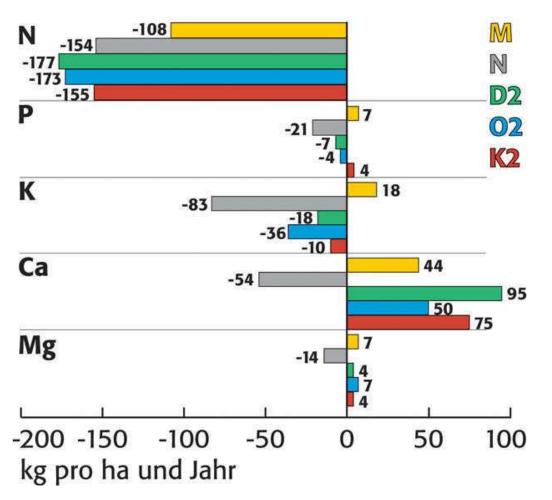
Das Ertragsniveau ist bei den biologischen Verfahren um durchschnittlich 20% tiefer. Gründe:

- > Rund 50% geringerer Einsatz an Düngern und fossiler Energie
- Verzicht auf chemisch-synthetische Pflanzenschutzmittel

Die über Erwarten hohen Erträge in Bio sind zurückzuführen auf:

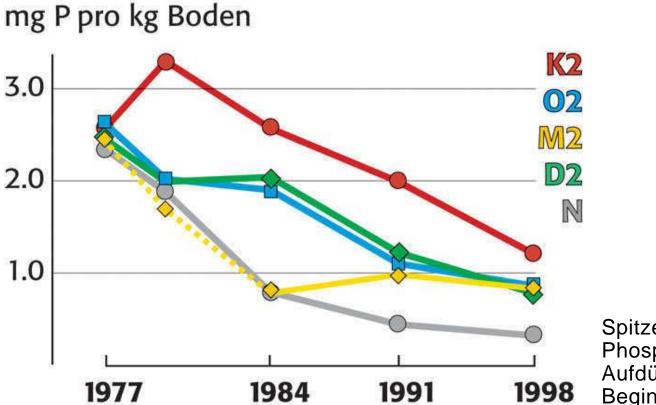
- Wurzelsymbiosen mit Rhizobien
- Wurzelsymbiosen mit Mykorrhizapilzen

Die Fruchtfolge hat entscheidenden Einfluss auf Ertragshöhen.


Mais nach Kleegras: Bio 9% tiefer als Konventionell
 Mais nach Soja: Bio 13% tiefer als Konventionell.

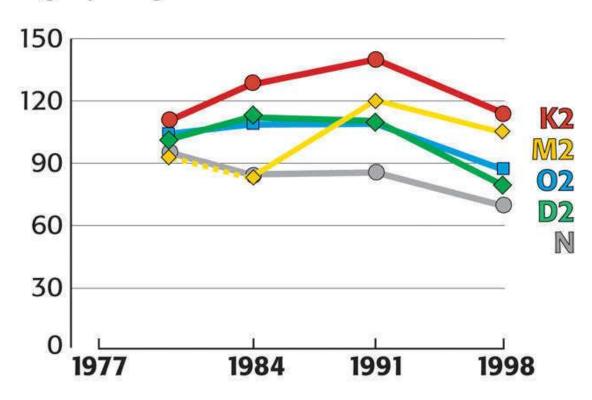
Die Sojaerträge sind in allen Verfahren ähnlich. Biokartoffelerträge waren im Verhältnis zu konventionell sehr tief. Gründe:

- > Hoher Nährstoffbedarf der Kultur in kurzer Kulturdauer (N, K)
- Hohe Krankheitsanfälligkeit der Kartoffeln (Krautfäule, Alternaria)


DOK-Versuch: Nährstoffgleichgewicht

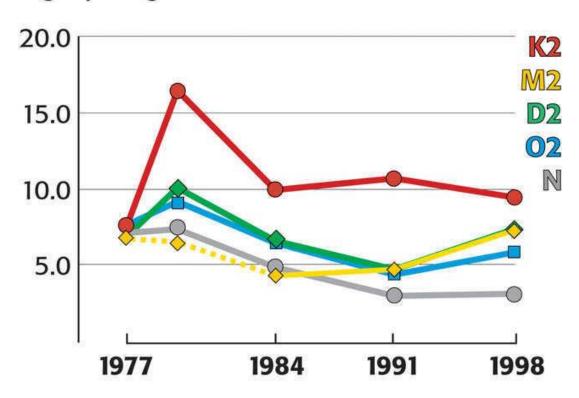
Nährstoffzufuhr und -entzug im Gleichgewicht?

Erklärung zu
Stickstoff:
Mineralisation,
Fixierung durch
Leguminosen und
Einträge aus der
Atmosphäre sind
nicht berücksichtigt


Phosphor

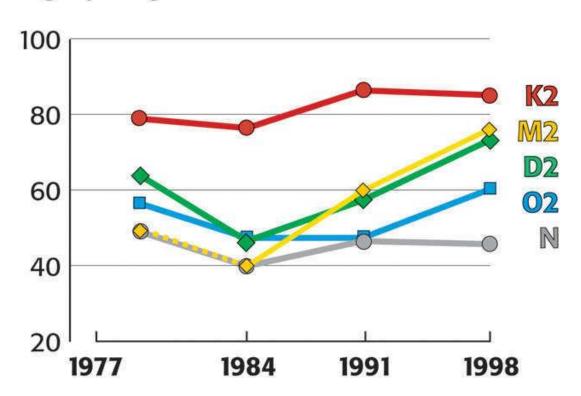
Spitze bei K2 wegen Phosphor-Aufdüngung zu Beginn des Versuchs

Phosphor

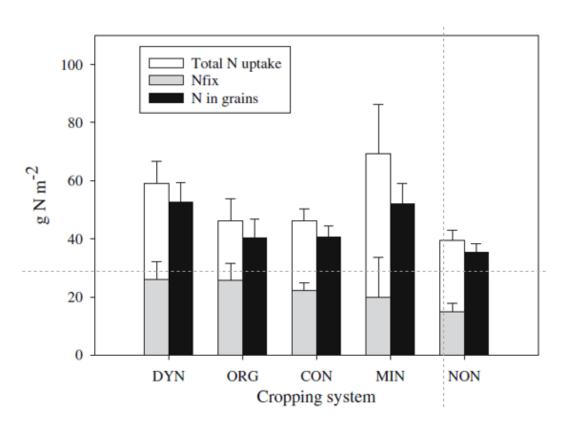

mg P pro kg Boden

Zitronensäure-lösliche Fraktion weniger gut sichtbar, spiegelt Phosphorreserve wieder

Kalium


mg K pro kg Boden

Spitze bei K2 rührt von Kalium-Aufdüngung zu Beginn des Versuchs her


Kalium

mg K pro kg Boden

Doppellactat-lösliches Kalium = nachlieferbare Kalium-Fraktion

N₂-Fixierung der Sojabohne im DOK Versuch

Mengen an dem symbiotisch fixierten Stickstoff (*Nfix*) in Spross und Wurzel, der totalen Stickstoffaufnahme (*total N uptake*) und des in vollentwickelten Körnern enthaltenen Stickstoffs (*N in grains*) in verschiedenen Anbausystemen.

Fehlerbalken kennzeichnen die Standardfehler des Mittelwertes.

Quelle: Oberson et al., 2007

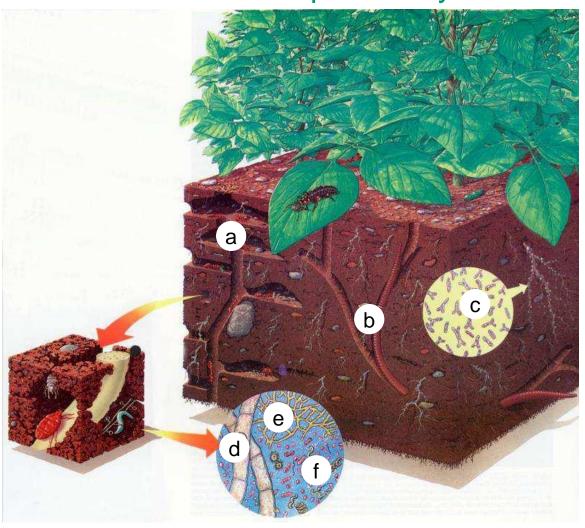
Stickstoff: Fixierung und Transfer von Klee

N-Fixierung (N_{SYM}) von Klee und N Transfer (N_{Trans}) zu Gras in Kleegraswiese im DOK

Verfahren (N Düngung)	Produktivität (Klee+Gras) t/ha/Jahr	Klee %	N _{SYM} kg/ha/Jahr	N _{SYM} +N _{Trans} kg/ha/Jahr
D1 (50 N/ha/J)	10.2	49	147	194
D2 (100 N/ha/J)	10.6	46	128	183
O1 (50 kg/ha/J)	9.8	51	142	191
O2 (100 kg/ha/J)	11.6	53	161	218
K1 (80 kg N/ha/J)	12.5	39	140	214
K2 (160 kg/ha/J)	13.2	28	104	197
N (0kg/ha/J)	6.5	51	100	135

Quelle: Oberson et al., 2013, Plant & Soil, modifiziert nach Andreas Lüscher, ART

Zusammenfassung


Entwicklung der verfügbaren Nährstoffe und Nährstoffvorräte

- deutliche Wirkung der Verfahren
- Grösste Unterschiede zwischen den Düngungsstufen 1 und 2 bei allen Verfahren (Düngungsstufe 1 mit 0.7 DGVE ist kritisch)

Biologische Verfahren

- > P-Versorgung: bei praxisüblicher Düngung (Stufe 2) noch ausreichend
- K-Versorgung: bei praxisüblicher Düngung (Stufe 2) kritisch
- Ursache: negative N\u00e4hrstoffbilanzen

Der Boden – ein komplexes System

- a. Ameisen
- b. Regenwürmer
- c. Rhizobien
- d. Pilze
- e. Actinomyceten
- f. Bakterien

Bild: Reganold et al., 1990

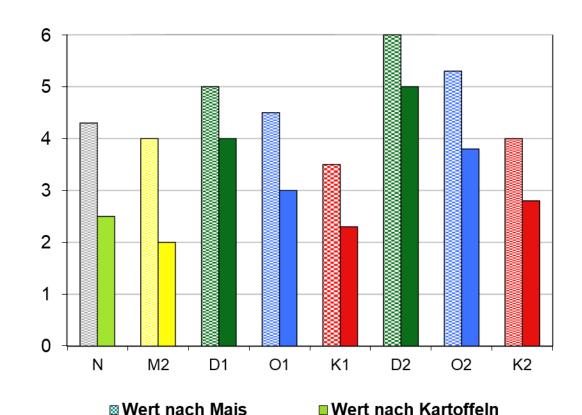
Stabilität der Bodenstruktur durch Hofdünger

Der Einsatz von Hofdünger wirkt sich positiv auf die im Boden lebenden Mikroorganismen, also die Biodiversität der Böden, aus.

Belebte Böden sind stabiler.

Konventionell (nur mineralische Düngung)

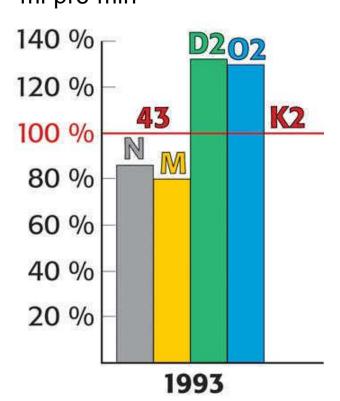
Bio-dynamisch (mit Kompostdüngung)


Bilder: FiBL

Bodenstrukturstabilität

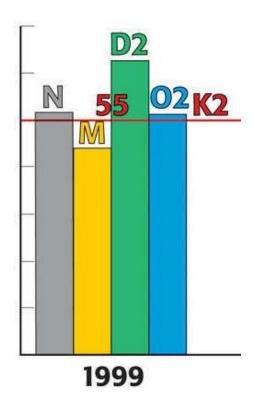
Bodenstrukturstabilität

Quelle: FiBL

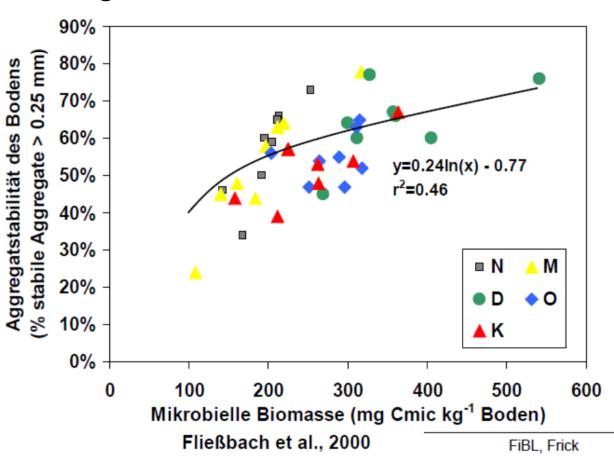

hohe Stabilität

tiefe Stabilität

Bodenstrukturstabilität

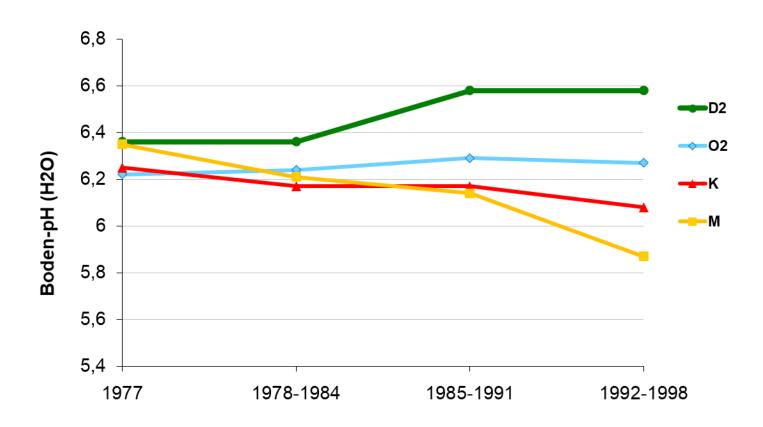

Perkolationsstabilität ml pro min

Perkolationsstabilität = «Nicht-Erosionsneigung»


Krümelstabilität

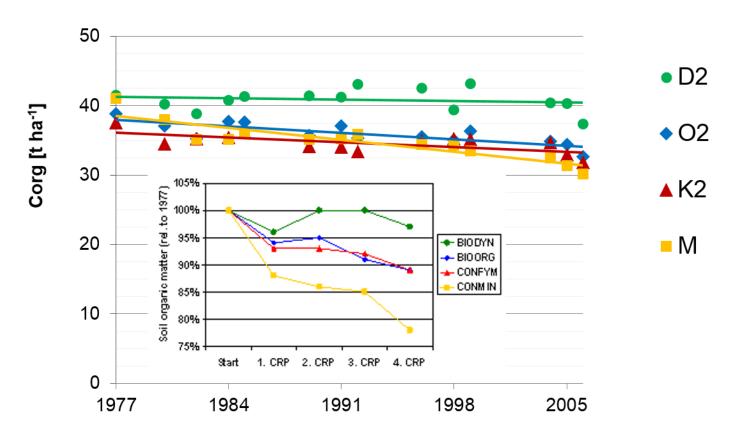
% stabile Aggregate >250 µm

Strukturstabilität

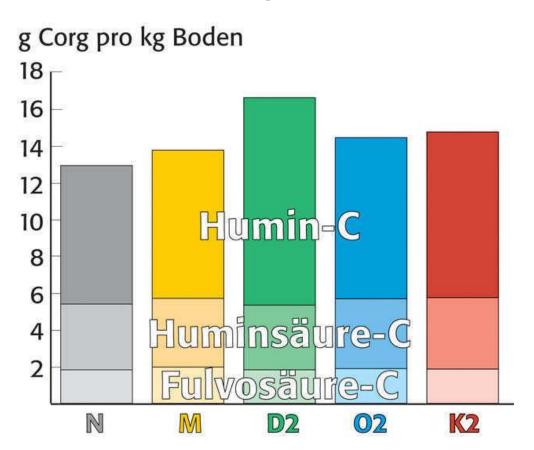

Mikroorganismen stabilisieren den Boden

Boden-pH

Veränderungen im Boden-pH


Quelle: FiBL

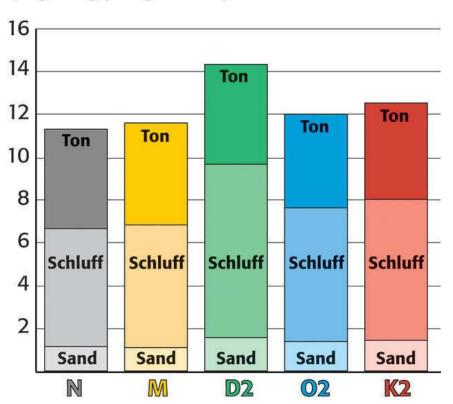
Kohlenstoffgehalt


Veränderungen im Kohlenstoffgehalt des Bodens

Quelle: Fliessbach et al., 2007, AGEE und Leifeld et al., 2009, AJ

Kohlenstoffverteilung

Kohlenstoffverteilung in den Huminstoff-Fraktionen



Höherer Gehalt an organischer Substanz bei D2 beruht auf höherem Anteil stabiler organischer Verbindungen, die durch Huminfraktion repräsentiert

Kohlenstoffverteilung

Kohlenstoffverteilung in den Korngrössenfraktionen

(mg Corg pro g Boden)

Auf höheren C-Gehalt im Schluff beruht geringere Verschlämmungsneigung der biologischdynamischen Böden

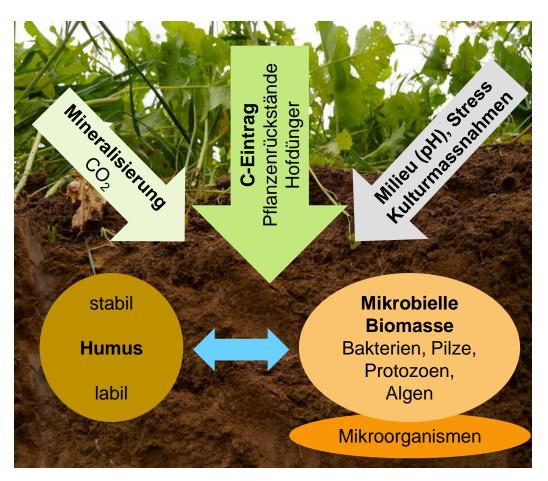
Zusammenfassung

Entwicklung des Humusgehalts

Konstant: D2

Langsame Abnahme: O2, K2

Starke Abnahme: M, N, D1, O1, K1


Reduktion der Hofdüngergaben beschleunigt den Humusschwund

Krümelstabilität wird beeinflusst durch

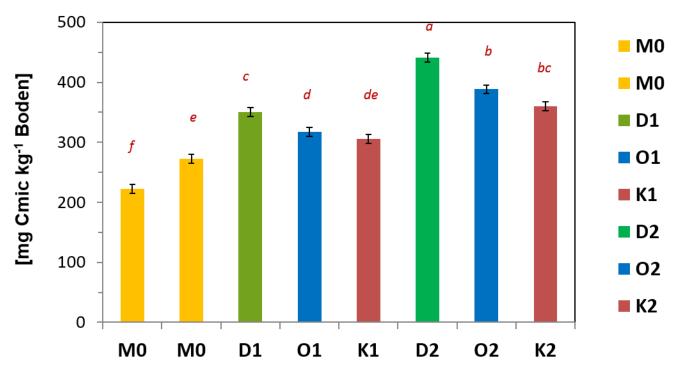
- Humusgehalt
- Kalkzustand (pH?)

Geringere Verschlämmungsneigung dank höherem C-Gehalt im Schluff bei bio-dynamisch

Mikroorganismen bilden Humus

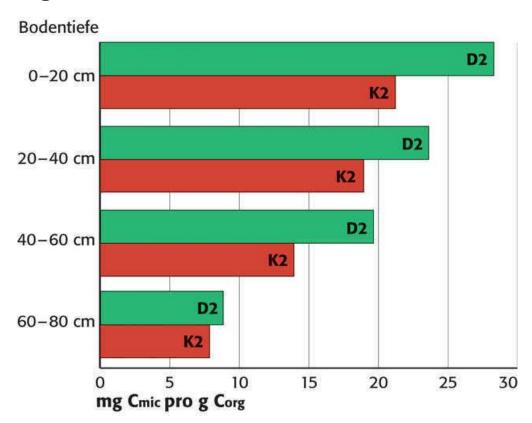
Zersetzung des organischen Materials durch Mikroorganismen in

- Humus (Humifizierung)
- Nährstoffe (Mineralisierung)


Bild: FiBL

Mikrobielle Biomasse

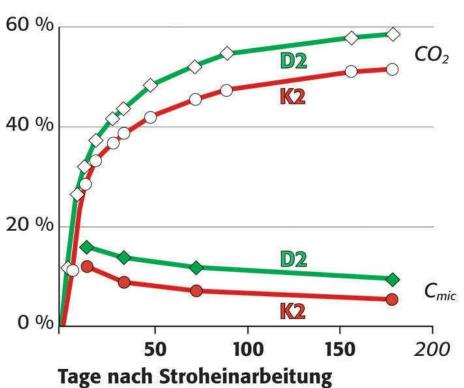
DOK: Mikrobielle Biomasse 1998, 2006 und 2012


Standardfehler und Unterschiede pro Untersuchungsjahr

Quelle: FiBL

Kohlenstofffraktionen

Verhältnis von mikrobiellem Kohlenstoff zum gesamten organischen Kohlenstoff

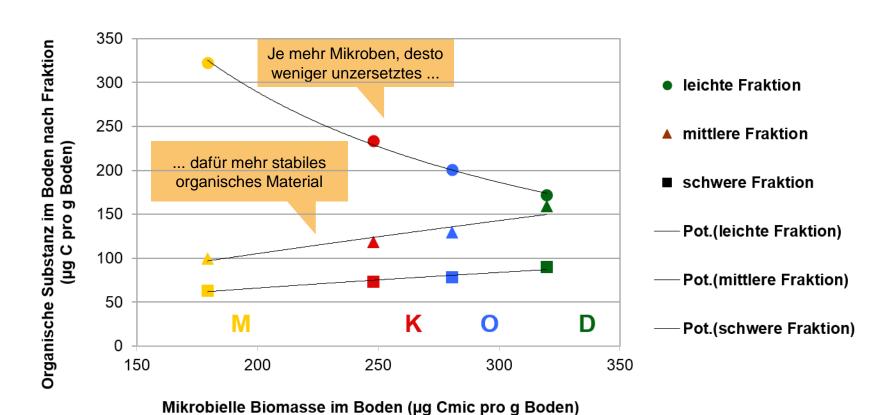


Anteil Mikroorganismen an organischer Substanz zeigt Belebtheitsgrad des Bodens

Kohlenstofffraktionen

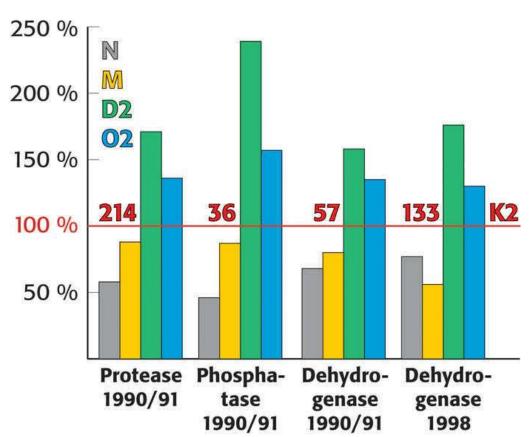
Veratmung und Zunahme der mikrobiellen Biomasse nach Strohzugabe

% abgebautes (CO₂) und eingebautes (C_{mic}) Stroh

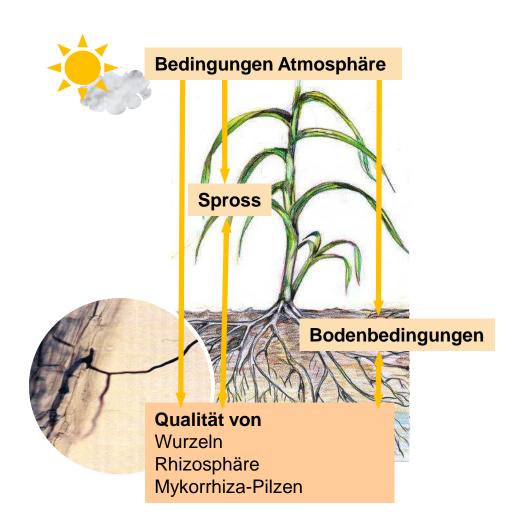

In Bioverfahren laufen Mineralisierungs- und Humusaufbauprozesse intensiver ab.

Über die Jahre akkumuliert sich die Kohlenstoffmenge im Boden.

Dichtefraktionen


Dichtefraktionen

Quelle: Fliessbach und Mäder, 2000, SBB


Bodenenzyme

Bodenenzyme als Zeiger mikrobieller Funktionen

DOK-Versuch

Bodenleben beeinflusst Pflanzeneigenschaften

Bodenbedingungen bestimmen das Sprosswachstum.

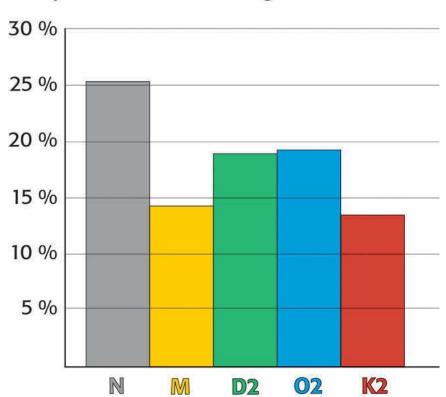

Je höher die unterirdische Diversität (Bodenlebewesen, Nährstoffe) desto besser das oberirdische Wachstum.

Bild: IGZ, Grossbeeren

Mykorrhiza-Pilze

Wurzelbesiedlung mit symbiotischen Mykorrhiza-Pilzen (1989-1993)

% mykorrhizierte Wurzellänge

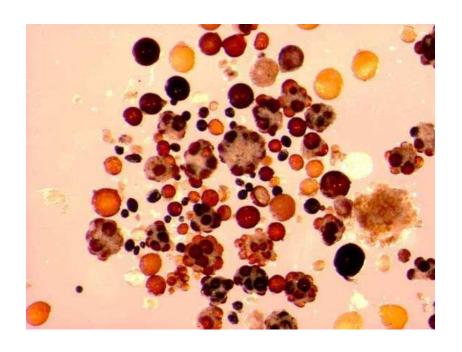
Grafik zeigt Mittel aller Kulturen.

Am stärksten wurde Kleegras mykorrhiziert, gefolgt von Wickroggen.

Winterweizen wurde wenig mykorrhiziert.

Mykorrhiza-Pilze

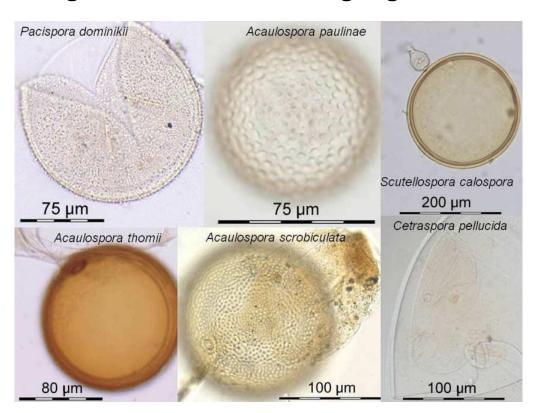
Reserveorgane von Mykorrhiza in Wurzeln


Mykorrhizapilze
erleichtern Wurzeln
dank vermehrter
Symbiose
Erschliessung von
Nährstoffen aus dem
Boden

Quelle: FiBL-Dossier «Bio fördert Bodenfruchtbarkeit und Artenvielfalt»

Fruchtfolge fördert Mykorrhiza-Pilze

Mykorrhiza (Vielfalt an Sporentypen)


•	· · · · · ·						
Grasland							
	Standort 1	26					
	Standort 2	27					
	Standort 3	26					
Ackerland							
Fruchtfolge	DOK: BIOORG	26					
	IP: CONFYM	18					
Monokulturen	Standort 1	13					
	Standort 2	10					
	Standort 3	8					

Quelle: Oehl et al., 2003, AEM, 2816. Daten: Daten: Bot. Inst. Uni Basel

Mykorrhiza-Pilze

Gewisse AM-Pilzarten reagieren empfindlich auf häufigen Pflugeinsatz und hohe Düngung

Beispiele von AM-Pilzarten (AMF), die besonders empfindlich auf intensive ackerbauliche Nutzung im Vergleich zu den organisch-biologischen und biologischdynamisch bewirtschafteten Verfahren des DOK-Versuchs reagierten

Quelle: Oehl et al, 2011; Agrarforschung Schweiz, 304-311

Zusammenfassung

Deutliche Unterschiede zwischen Verfahren

Positive Auswirkungen der biologischen Verfahren auf Belebtheit und Stabilität der Böden

Biokulturen erschliessen dank vermehrter Symbiose mit Mykorrhizapilzen Boden besser

Hauptwirkungen durch

- Bewirtschaftungsintensität (Düngungsintensität 1 oder 2)
- Organische Düngung
- pH Regulation

Regenwürmer

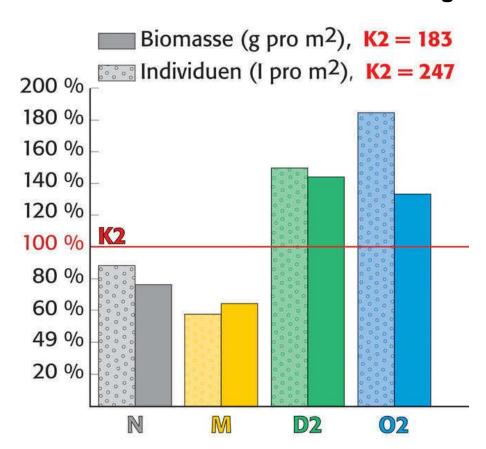
Funktionen von Regenwürmern

- Durchlüftung, verbesserte
 Wasseraufnahme und
 Wasserabfluss
- Abbau von totem Pflanzenmaterial
- Verbesserung der
 Verfügbarkeit von
 Nährstoffen für Pflanzen
- Bindung von Kohlenstoff im Boden, etc.

Bild: L. Pfiffner, FiBL

Regenwürmer

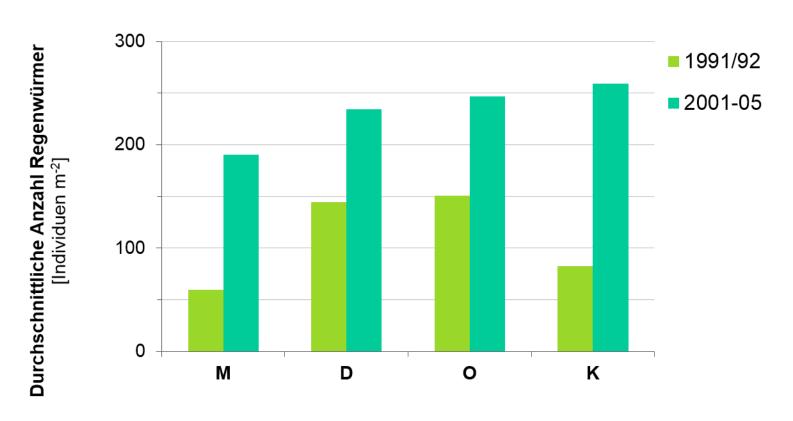
Regenwurmexkremente: ein wertvolles Produkt


Regenwurmexkremente

- 40-100 Tonnen pro Hektar und Jahr im Boden und auf der Bodenoberfläche
- Reich an Humus
- > pH-neutral
- Angereichert mit Stickstoff (5x), Phosphor (7x) und Kalium (11x) im Vergleich zum Boden
- Stabile Bodenaggregate
- Durch Ton-Humus-Komplexbildung

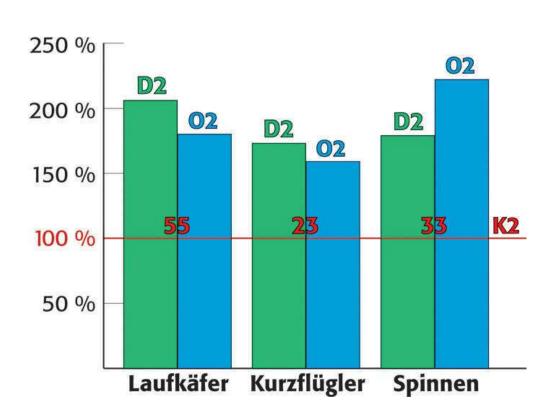
Regenwürmer

Biomasse und Individuenzahl der Regenwürmer



Mittelwerte 1990, 1991 und 1992

Regenwürmer


Anzahl Regenwürmer vor und nach Umstellung der konventionellen Verfahren auf IP (ÖLN)

Quelle: Pfiffner, 1993 und Jossi et al., 2007

Regenwürmer

Häufigkeit von Laufkäfern, Kurzflüglern und Spinnen

Mittelwerte 1988, 1990 und 1991

Gefährdete Laufkäferarten und mikroklimatisch anspruchsvolle Arten meist nur in Bioparzellen

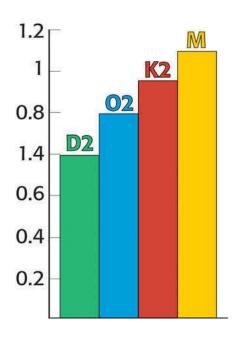
DOK-Versuch

Zusammenfassung Bodenzoologie

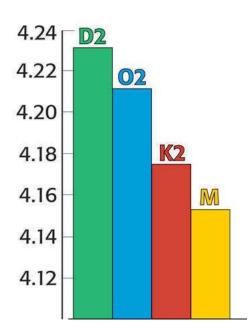
Höhere Diversität in biologischen Verfahren

- Unkräuter und Samen
- > Laufkäfer, Spinnen und andere oberirdische Arten

Biomasse von Regenwürmern


> Gleich bei Verfahren mit Hofdüngergaben

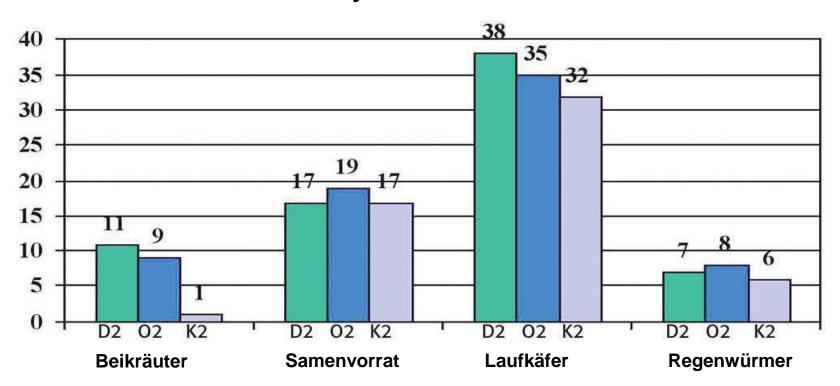
Die mikrobiellen Bodenlebewesen unterscheiden sich in den Verfahren


Artenvielfalt

Energienutzung und mikrobielle Diversität (1995/96)

metabolischer Quotient (μg CO2- pro g Cmic und h)

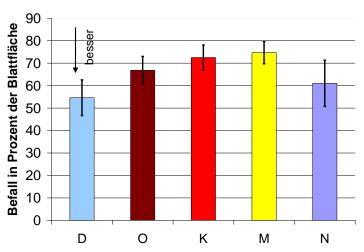
Shannon-Index



Mit steigender Vielfalt benötigt die Mikroorganismenpopulation weniger Energie pro Einheit Biomasse.

Shannon-Index gibt Mass der mikrobiellen Vielfalt an

Artenvielfalt


Anzahl Arten in den Anbausystemen

Je mehr Beikrautarten, desto bessere Lebensbedingungen für viele Laufkäferarten

Pilzkrankheit «falscher Mehltau»

Befall von Ackerschmalwand mit falschem Mehltau in einem Topf-Versuch mit DOK-Böden

Falscher Mehltau infiziert nur Pflanzen aus der Familie der Kreuzblütler.

Gemüsebau: alle Kohlsorten

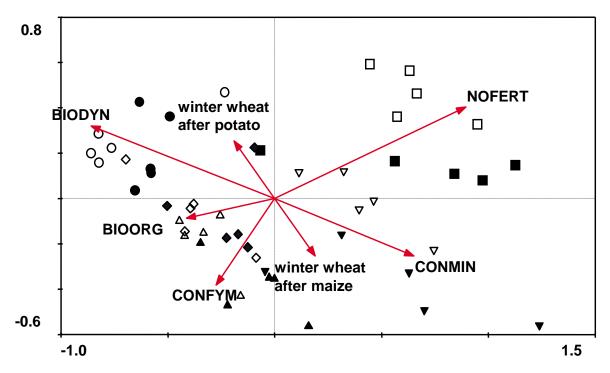
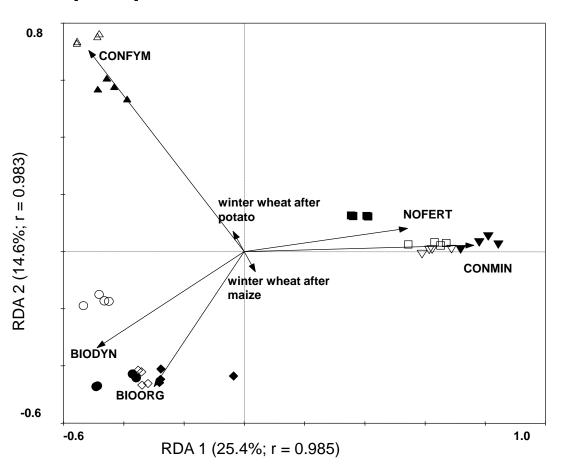

Ackerbau: Raps, Senf

Diagramm: Diplomarbeit Felix Weber ETH, 2005 Bild 1: Mikroskopische Aufnahme eines Sporangium von *Hyaloperonospora parasitica*Emmanuel Boutet Bild 2: Ackerschmalwand, standard

Artenvielfalt

Molekulargenetische T-RFLP Profile

Molekulargenetische T-RFLP Profile unterscheiden organische und nicht organisch gedüngte Böden, sowie auch Vorfrüchte

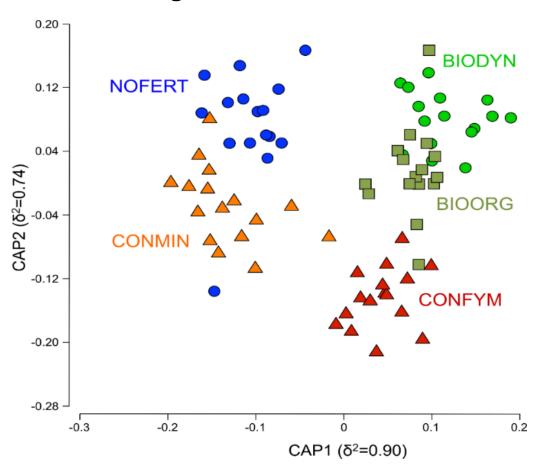

Constrained ordination of T-RFLP profiles in soils under winter wheat after potatoes (empty symbols) and after maize (filled symbols) in the DOK farming systems (\square , \blacksquare : NOFERT; \triangledown ,

 \blacktriangledown : CONMIN; \bigcirc , \bullet : BIODYN; \diamondsuit , \bullet : BIOORG; \triangle , \blacktriangle : CONFYM)

Quelle: Hartmann et al, 2006, FEMS ME

Artenvielfalt

Phospholipidfettsäuren

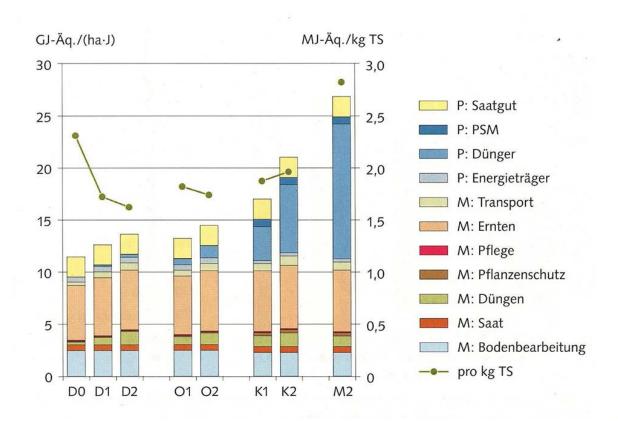

Phospholipidfettsäuren sind Markermoleküle der Zellmembran von Organismen.

Sie differenzieren zwischen organisch und nicht organisch gedüngten Verfahren aber auch zwischen CONFYM und BIODY, BIOORG

Quelle: Esperschütz et al., 2007 FEMS ME

Artenvielfalt

Differenzierung der Mikrofloren



Differenzierung der Mikrofloren mit neuesten highthroughput Verfahren: Jede Bewirtschaftung erzeugt ihre eigene typische Mikroflora

Quelle: Hartmann et al., ISMEJ, 2014

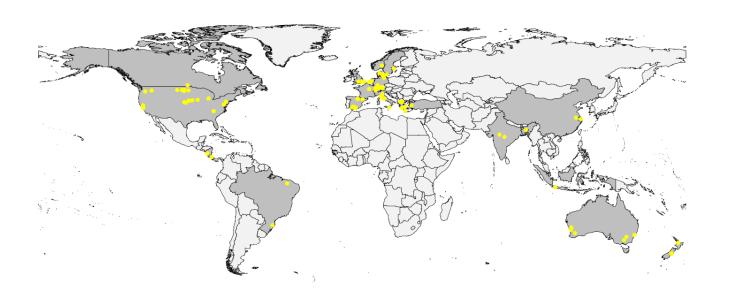
Energieverbrauch

Energieverbrauch pro Hektar und pro Trockenmasseeinheit

Quelle: Nemecek et al., 2005

DOK-Versuch: Ökobilanz, Klimawirksamkeit Energieverbrauch

Energieverbrauch und Klimaerwärmungspotential

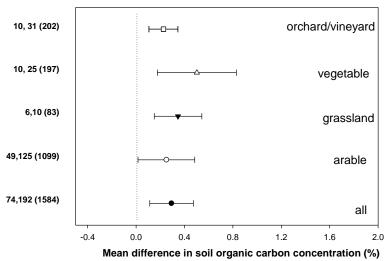

Field trial	System	System Energy use Gobal warming potentia			ing potential	
	GJ ha ⁻¹ yr ⁻¹		MJ kg ⁻¹ yield d.m.	kg CO ₂ -eq ha ⁻¹ yr ⁻¹	kg CO ₂ -eq kg ⁻¹ yield d.m.	
DOK trial (1985-1998) (Nemecek et al., 2005)	BIODYN BIOORG CONFYM CONMIN	13.6 (65 %) 14.5 (69 %) 21.0 (100 %) 26.9 (128 %)	1.6 (80 %) 1.8 (90 %) 2.0 (100 %) 2.8 (140 %)	2804 (63 %) 2920 (65 %) 4474 (100 %) 4121 (92 %)	0.35 (81 %) 0.36 (84 %) 0.43 (100 %) 0.44 (102 %)	

Quelle: Nemecek et al., 2005, Ökobilanzierung, Zürich, 156 p.

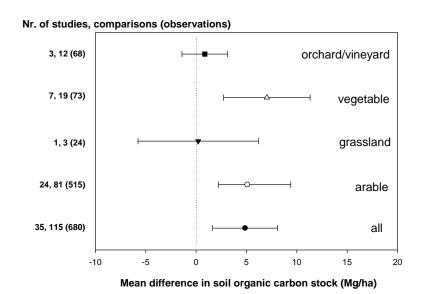
DOK-Versuch: Ökobilanz, Klimawirksamkeit Bodenkohlenstoff (Metaanalyse) 1

Kohlenstoff in biologischen Landbausystemen

Geografische Verteilung der Orte 74 Studien mit über 211 Vergleichen


Quelle: Gattinger et al., PNAS, 2012

Bodenkohlenstoff (Metaanalyse) 2


Bodenkohlenstoff in biologischen und konventionellen Anbausystemen weltweit

Carbon content (C_{org, %})

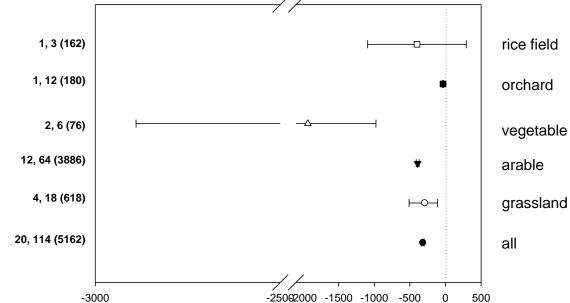
Nr. of studies, comparisons (data points per treatment)

C-stock (t Corg/ha)

Quelle: Gattinger et al. PNAS (2012)

Methan und Lachgas Emissionsraten

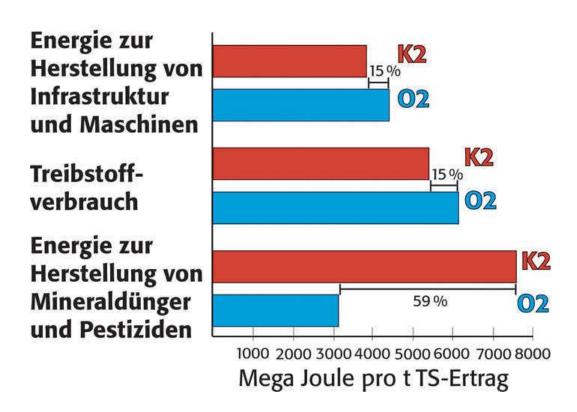
	CH ₄ fluxes per acreage (kg CH ₄ -C ha ⁻¹ a ⁻¹)					GWP CH ₄ fluxes per acreage (kg CO ₂ -eq. ha ⁻¹ a ⁻¹)			
land-use		Mean	SD	studies	treatments	Mean	SD	studies	treatments
org arable non-org	org	-0.61	0.13	3	3	-20.2	4.2	3	3
	non-org	-0.54	0.11		8	-18.0	3.6		8
rice-paddies	org	180.68	27.29	1	3	6023	910	1	3
	non-org	145.70	7.23		3	4857	241		3


		s per acreage (kg N ₂ O-N ha ⁻¹ a ⁻¹)			GWP ^c N ₂ O fluxes per acreage (kg CO ₂ -eq. ha ⁻¹ a ⁻¹			
	Mean	SD	studies	treatments	Mean	SD	studies	treatments
org	2.71	1.02	12	44	1270	476	12	44
non-org	3.14	1.15		58	1437	536		58
org	2.58	1.00		41	1209	470		41
non-org 2.97 1.00	1.00		55	1392	468	11	55	
org	3.22	0.85	2	3	1507	398	2	3
non-org	5.64	2.52		3	2643	1118		3
org	0.89	0.16	1	3	418	76	1	3
non-org	2.28	0.30		3	1068	142		3
	non-org org non-org org non-org org	non-org 3.14 org 2.58 non-org 2.97 org 3.22 non-org 5.64 org 0.89	non-org 3.14 1.15 org 2.58 1.00 non-org 2.97 1.00 org 3.22 0.85 non-org 5.64 2.52 org 0.89 0.16	non-org 3.14 1.15 org 2.58 1.00 non-org 2.97 1.00 org 3.22 0.85 non-org 5.64 2.52 org 0.89 0.16	non-org 3.14 1.15 58 org 2.58 1.00 41 non-org 2.97 1.00 55 org 3.22 0.85 3 non-org 5.64 2.52 3 org 0.89 0.16 3	non-org 3.14 1.15 58 1437 org 2.58 1.00 11 1209 non-org 2.97 1.00 55 1392 org 3.22 0.85 2 3 1507 non-org 5.64 2.52 2 3 2643 org 0.89 0.16 3 418	non-org 3.14 1.15 58 1437 536 org 2.58 1.00 11 55 1392 468 org 3.22 0.85 2 3 1507 398 non-org 5.64 2.52 3 2643 1118 org 0.89 0.16 1	non-org 3.14 1.15 58 1437 536 12 org 2.58 1.00 11 55 1392 468 11 org 3.22 0.85 2 3 1507 398 2 non-org 5.64 2.52 3 2643 1118 org 0.89 0.16 1 3 418 76 1

Quelle: Skinner et al., STOTEN, 2014

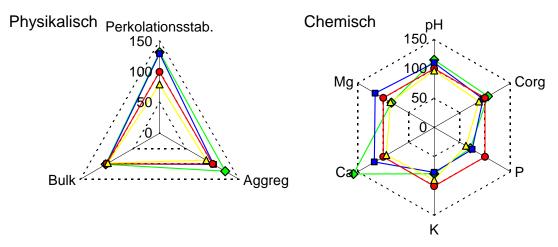
Lachgasemissionen

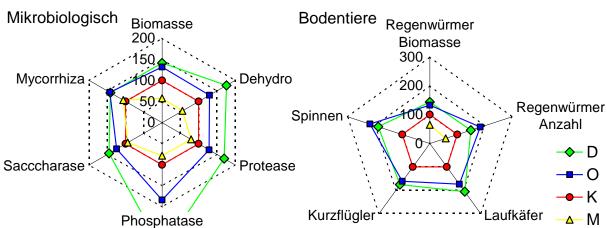
Lachgasemissionen aus biologisch und nicht-biologisch bebauten Böden


Mean difference in nitrous oxide fluxes (CO₂ eq/ha*yr)

317 kg CO₂eq ha⁻¹ yr⁻¹ (≈ 0.34 kg N2O-N ha⁻¹ yr⁻¹) weniger Emissionen in organisch bebauten Böden (20 Studien/114 Vergleiche/5162 Datenpunkte; keine Daten aus der Schweiz verfügbar)

Je negativer die Werte, desto weniger Emissionen aus dem organischen System. Horizontale Balken zeigen das 95% Konfidenzintervall. Signifikanz ist gegeben, wenn Fehlerbalken die 0-Linie nicht berühren.


Quelle: Skinner, Gattinger et al. 2011


Direkte und indirekte Energiekomponenten

DOK-Versuch

Übersicht Bodeneigenschaften

Quelle: Mäder et al., 2002: Science 296

Hintergrund DOK

Impressum, Bezug und Nutzungsrechte

Herausgeber und Vertrieb

Forschungsinstitut für biologischen Landbau (FiBL), Ackerstrasse 113, Postfach 219, CH-5070 Frick
Tel. +41 (0)62 865 72 72
info.suisse@fibl.org, www.fibl.org

Bio Suisse Peter Merian-Strasse 34 CH-4052 Basel Tel. +41 (0)61 204 66 66 bio@bio-suisse.ch, www.bio-suisse.ch

Mitarbeit und Durchsicht:

Urs Guyer (Bio Suisse), Robert Obrist, Pascal Olivier (Bio Suisse)

Redaktion: Andreas Fliessbach, Kathrin Huber,

Paul Mäder

Gestaltung: Daniel Gorba

Fotos: Fotos und Grafiken FiBL, wo nicht anders erwähnt.

Bezug und kostenloser Download:

www.shop.fibl.org (Foliensammlung Biolandbau)

Haftung

Die Inhalte der Foliensammlung wurden nach bestem Wissen und Gewissen erstellt und mit grösstmöglicher Sorgfalt überprüft. Dennoch sind Fehler nicht völlig auszuschliessen. Für etwa vorhandene Unrichtigkeiten übernehmen wir keinerlei Verantwortung und Haftung.

Nutzungsrechte

Die Foliensammlung dient Unterrichts- oder Schulungszwecken. Einzelne Inhalte dürfen unter Angabe von Bild- und Textquellen verbreitet und verändert werden. Urheberrechtshinweise jeglicher Art, die in heruntergeladenen Inhalten enthalten sind, müssen beibehalten und wiedergegeben werden. Die Herausgeber übernehmen keine Haftung für die Inhalte externer Links.

2. Auflage 2016

1. Auflage 2004, Redaktion Res Schmutz

Die Foliensammlung wurde mitfinanziert durch Coop, mit einer Spende aus Anlass von 20 Jahre Coop Naturaplan.