Advantages of cultivating cotton organically

	Conventional Cotton	Organic Cotton
Environment	 Pesticides kill beneficial insects Pollution of soil and water Resistance of pests 	 Increased bio-diversity Eco-balance between pests and beneficial insects No pollution
Health	 Accidents with pesticides Chronic diseases (cancer, infertility, weakness) 	 No health risks from pesticides Healthy organic food crops
Soil fertility	 Risk of declining soil fertility due to use of chemical fertilizers and poor crop rotation 	Soil fertility is maintained or improved by organic manures and crop rotation
Market	 Open market with no loyalty of the buyer to the farmer Dependency on general market rates Usually individual farmers 	 Closer relationship with the market partner. Option to sell products as 'organic' at higher price Farmers usually organized in groups
Economy	High production costsHigh financial riskHigh yields only in good years	 Lower costs for inputs Lower financial risk Satisfying yields once soil fertility has improved

Successful organic cotton farming with a system approach

FiBL

Organic standards in cotton farming

- No application of any synthetic fertilizers such as urea, NPK, DAP etc.
- No application of synthetic pesticides (including herbicides, insecticides, fungicides) or growth promoters.
- No use of genetically modified organisms (GMO) such as Bt-cotton varieties.
- Crop rotation (no cotton after cotton in the same field in two subsequent years) and/or intercropping.
- Prevent spray drift from neighbouring conventional fields, e.g. by growing border crops.
- Maintain records and documents for inspection and certification.

Internal control and external certification – building trust

FiBL

Organic Cotton Training Manual

Requirements of the cotton crop

Ideal climatic conditions

- High temperature (ideally 30°C)
- Long vegetation period
- Ample sunshine
- Dry climate
- Min. 500 mm rainfall or irrigation

Ideal soil conditions

- Deep soils
- Heavy clay soils, ideally black cotton soils (vertisols)
- No water logging

Crop development

- Strong root growth in first two weeks
- Natural bud shedding (only approx. 1/3 of flowers develop bolls)
- Plant compensates for damage through increased growth

Selecting the right cotton varieties

American Upland cotton (G. hirsutum)

Advantages:

- High yields
- Longer staple (higher price)

Disadvantages:

- Needs more water
- Needs more manure
- More prone to pests

Suitable for:

- Deep soils
- Heavy soils
- Good irrigation

Indian 'desi' varieties (G. arboreum, G. herbaceum)

Advantages:

- Better drought resistan
- More pest tolerant

Disadvantages:

- Smaller yields
- Mostly shorter staple (lower price)

Suitable for:

- Shallow soils
- Sandy soils
- Little/no irrigation

Soil types and their management

Light soils	Heavy soils
Shallow; roots do not penetrate very deeply	Deep; roots penetrate deeply
Light colours	Dark colour; cracks when dry
Sandy; easy to cultivate	Rich in clay; muddy when wet, hard when dry
Low water retention capacity → affected by drought!	High water retention capacity \rightarrow less risk of being affected by drought
Nutrients easily get leached out → need sufficient compost; supply of mineral fertilizers in several doses	Very fertile → need sufficient manures because of high productivity
Drought-resistant crops: sorghum, maize, pigeon pea (desi varieties), moong, millet, castor; desi cotton varieties	High performance crops: chilli, soya bean, banana, sugarcane, hybrid cotton varieties, pigeon pea (hybrid varieties); wheat
Intercrop to reduce risk of crop failure	Intensive crop rotation; green manures
Compost and mulching to improve water holding and nutrient supply	Compost to activate soil life and improve soil structure
Shallow ploughing, little soil cultivation	Deep ploughing, frequent intercultural operations (shallow soil cultivation)
Increase infiltration with trenches and bunds	Risk of waterlogging!

Why organic matter is so important

Crop rotation – rotation crops

Rotation Type	1st year	2nd year	3rd year
Pulses + cereals	Cotton (winter crop: wheat or pulses)	Pulses (soya, moong beans, cow pea, black gram, pigeon pea), maize or sorghum	Cotton (winter crop: wheat or pulses)
Vegetable	Cotton (winter crop: wheat or pulses)	Chilli, onion or other intensive vegetable crop	Cotton (winter crop: wheat or pulses)
Sugar cane	Cotton	Sugar cane	Sugar cane
Diverse rotation (from Tanzania)	Cotton	Sesame, safflower, sorghum or maize	Pulses (moong, chick pea, cow pea, pigeon pea, groundnut)
Rotation with herbal plants (from Egypt)	Cotton (winter crop: wheat or pulses)	Herbs (anise, basil, fennel etc.)	Maize with clover intercrop

Green manures and intercrops

Timing of nutrient supply in the cotton crop

Disturbance of nutrient uptake

Nitrogen immobilisation in soil \rightarrow retarded growth

Symptoms

- Yellowish leaves
- Stunted growth
- Delayed development

The reason

Decomposable material in the soil (half rotten compost or manure, straw, crop residues)

The decomposition of carbon-rich organic material requires nitrogen

Little organic material with high nitrogen content (e.g. oil cake)

Preventive measures

- Remove sturdy crop residues (stalks) from the field and compost them
- Ensure that the compost is well decomposed
- Apply compost at least two weeks before sowing
- Apply sufficient nitrogen-rich organic manures (e.g. de-oiled cakes)
- Note: Organic manures need 1-3 weeks until they release nitrogen
- Shallow soil cultivation helps to accelerate decomposition of organic matter

Organic manures and natural mineral fertilizers for cotton

Manure/Fertilizer	Comment	Nitrogen (total N)	Phosphate (P ₂ O ₅)	Potash (K ₂ O)
Compost	Soil improvement	0.6 - 1.5 %	0.5 - 1.0 %	0.5 - 2.0 %
Farmyard manure	Less stable humus	0.7 - 1.5 %	0.5 - 0.9 %	0.4 - 1.5 %
Vermi-compost	Very stable humus	0.6 - 1.5 %	0.4 - 0.9 %	0.5 - 1.0 %
De-oiled Castor	N- and P-supply	4.5 - 6.0 %	0.8 - 1.8 %	1.3 - 1.5 %
Cane press mud	Soil improvement	1.4 - 1.8 %	0.1 – 1.0 %	0.4 - 0.6 %
Rock phosphate	P-supply, in compost heap	0	15 - 30 %	0
Muriate of potash	Natural potassium fertilizer	0	0	ca. 60 %
Wood ash	K, Mg, Ca, Mg etc.	0	1 - 3 %	1 – 8 %

Note: Figures are given in percent of dry matter. The nutrient contents vary from source to source.

Compost and farmyard manure – proper handling pays off!

Nutrient contents of different compost and dung heaps collected in the Nimar region, India

Manure / Compost type	Nitrogen (total N)	Phosphate (P ₂ O ₅)	Potash (K ₂ O)
Cow dung heap, well maintained	1.5%	0.7%	0.8%
Cow dung heap, poorly maintained (too wet)	0.9%	0.5%	1.2%
Compost in good condition (with heat process and turning)	1.3%	0.9%	0.8%
Compost, poorly maintained (too dry)	0.8%	0.5%	0.5%
Vermi-compost in good condition	1.5%	0.9%	0.7%
Vermi-compost, poorly maintained	0.6%	0.4%	0.7%

Setting up a compost heap

Nitrogen fixation through leguminous plants

- There is plenty of nitrogen in the air (78% nitrogen gas)
- Leguminous plants fix nitrogen from the air and make it available to the plant
- Examples: pigeon pea, soya bean, moong, cow pea, chick pea, daal etc.
- The fixation is done by bacteria living in root nodules (*Rhizobium* species)
- The nitrogen fixed by the leguminous crop gets available to the associated or following crop (e.g. cotton)
- If a lot of fertilizer is available in the soil, legumes fix less nitrogen

Keeping your cotton crop healthy

FiBL

Organic Cotton Training Manual

Important cotton pests

Bollworms and other caterpillars

American bollworm (Heliothis armigera)

Cutworm (Agrotis spp.)

Cotton aphid (Aphis gossypii)

Sucking pests and other pests

Spider mites (Tetranychus spp.)

Grasshoppers (Locusta spp.)

Pink bollworm (Pectinophora gos.)

Armyworm (Spodoptera spp.)

Whitefly (Bemisia tabaci)

Cotton jassids (Amrasca devestans)

Termites (various spp.)

Spiny Bollworm (Earias spp.)

Cotton leafworm (Alabama argillacea)

Cotton stainer (Dysdercus spp.)

Thrips (Thripidae)

Root knot nematodes (Meloidogyne spp.)

Photos (top left to bottom right): Paolo Mazzei, Clemson University, Roland Smith, Mississippi State University, James Smith, Winfield Sterling, Douglas Ferguson, Insectcorner, P. Room, Scott Bauer, Cotton SA, University of Georgia, Frank Eyhorn, Insectcorner, Clemson University

Pest management in cotton

	Pest	Preventive measures	Direct control measures
	Bollworms (Helicoverpa and others)	 Trap crops: sunflower, okra, castor Hand-pick damaged capsules Encourage natural enemies Remove cotton stalks Cattle grazing after picking is over 	 Bt-spray, NPV spray Neem, botanical preparations Buttermilk spray Pheromone traps, light traps Trichogramma cards
X	Aphids, jassids, thrips, whitefly (Bemisia)	 Intercrop of moong, cow pea etc. Avoid high manure application Avoid waterlogging and water shortage Promote natural enemies by growing flowering plants 	 Neem, botanical preparations (chilli, sweet flag, turmeric etc.) Soft soap spray Cow urine spray Potato starch spray Yellow sticky traps
	Cotton stainers (Dysdercus)	 Frequent soil cultivation to destroy the eggs (also along field borders) Encourage birds (turmeric-coloured rice, bird perches, trees) Avoid stand-over of cotton 	 Pyrethrum spray Botanical sprays (neem, custard apple, garlic bulb, sweet flag, sweet basil, Derris species) Grazing of chickens
	Cutworms (Agrotis and other species)	 Early soil cultivation Remove weeds in and around fields Encourage birds, spiders etc. (bird perches, trees, hedges) 	 Apply neem cake into the soil Pyrethrum, Derris or thyme spray Cutworm baits Hand picking or Bt-spray at night

Photos: left: WURL, Insectcorner (3), J.K. Lindsey; middle: Paolo Mazzei, Roland Smith, Clemson University; right: Joseph Berger, Bradley Higbee, University of Tennessee (2), Olivier Olgiati

Direct pest management methods

Trichogramma

Giant milkweed

Pheromone trap

Biological control

- Trichogramma cards (parasitic wasp)
- Bt-spray (Bacillus thuringensis)
- NPV (Nuclear polyhedrosis virus)
- Beauvaria bassiana (fungus)

Natural pesticides

- Neem
- Botanical mixtures
- Buttermilk spray
- Soft soap spray

Mass trapping

- Light traps
- Sticky traps
- Pheromone traps

Monitoring pests - Economic threshold

(Graphics: gtz-IPM Project Shinyanga, Tanzania)

Soil cultivation and weed management

Preparing the field

- Early ploughing to expose pests to the sun
- Earthing up ridges
- Soil cultivation speeds up the decomposition of organic matter

Sowing

- Appropriate spacing
- 2-4 seeds per spot
- Gap filling with trap crops
- Timely thinning

Weed management

- Crop rotation prevents weeds
- Weeds can also be beneficial
- Timely intercultural operations

Low-cost drip irrigation in cotton

Normal drip system (approx. 1100 US\$ per ha) "Easy Drip" system (approx. 400 US\$ per ha) "Pepsee" drip system (approx. 220 US\$ per ha)

Organic Cotton Training Manual

Organic Cotton Training Manual

Strategies in organic cotton farming

Strategy I: Intensive organic

- High yields, but relatively high production costs
- High loss in case crop fails

Strategy II: Low input, low risk

- Smaller yields, but also lower production costs, thus still good income
- Lower loss in case crop fails

Farming intensities in conventional and organic cotton production

Success factors in the conversion to organic cotton farming

Getting ready

- Adequate training in organic agriculture and organic cotton production
- Involve the family in decision making
- Develop strategies to cope with initial drop in yields and higher labour requirement
- Competent and timely advice on organic crop management
- Regular exchanges with experienced organic farmers

Adapting the production system

- Try out organic technologies on small plots to gain experience
- Identify suitable crop rotation, green manures and intercrops
- Ensure sufficient input of organic matter (if necessary from outside the farm)

The role of women in organic cotton farming Impact on women **Involvement of women** Work load **Decision making** New activities **Role sharing** Food crops Experience sharing Support to women Training on organic farming Forming of women's groups Learning new skills

