To cap climate change now means to properly deck the table. FiBL is providing impetus along the entire value chain: from soil to plants and animals to food processing.
“Together one step ahead” – it is with this motto that FiBL Switzerland celebrates its 50th anniversary in 2023. The FiBL Group’s successful work rests on three pillars: Research into the fundamentals and applied aspects of organic agriculture at the highest level, communication of research results and services for organic practitioners and the general public, and, finally, close and appreciative cooperation with many national and international partners. With an initial staff of three in 1974, FiBL Switzerland has grown to almost 300 employees in 2022. The FiBL Group overall now employs more than 400 people. The trust and confidence placed in us and our work by politicians and the public has also grown steadily. This is evidenced by the increase in public funding awarded in 2021 and 2022 to the institutes constituting the FiBL Group. FiBL Switzerland, for example, looks back with gratitude to the new performance contract for the period 2022 to 2025, which was concluded with the Swiss Federal Office for Agriculture (FOAG) in 2021 and considerably exceeds the prior contract’s scope. It provides excellent security for FiBL’s performance capacity for the benefit of agriculture and society at large for this period. In 2021, the new construction and renovation of the FiBL Campus in the Swiss Fricktal was also largely completed. Its centrepiece is the newly built “Alvarium”, meaning beehive, a place for meetings, advanced training and the mutual exchange of knowledge and ideas, equipped with state-of-the-art communication technology and an organic restaurant.

The 2021/2022 Activity Report illustrates well the FiBL Group’s range of work and achievements. It also features a thematic focus on climate – in each of the chapters a project is presented that specifically addresses the present and future challenges posed by climate change. In future, the success of FiBL’s work will increasingly have to be measured by whether it succeeds in promoting the transformation of the food system with new ideas and concepts. In the sense of “one step ahead”, this means to see oneself as a continuous engine of innovation for a comprehensive systems approach in research, communication and extension, and to provide the relevant impetus. The challenges FiBL faces are significant, not least owing to the fact that competition for the best solutions for organic farming has increased.

We hope that this 2021/2022 Activity Report gives you, the reader, exciting insights into FiBL’s work and whets your appetite to discover more. We would like to thank all our funders, private donors and cooperation partners for their trust in our work.

Six FiBL, one idea

The FiBL Research Institutes of Organic Agriculture are non-governmental civil society institutions or non-profit enterprises operating as foundations or associations in a number of European countries. While each of the institutes is legally autonomous, they see themselves as part of the FiBL Group, working closely together in partnership.

The FiBL Group is united by the objective to continuously advance organic agriculture along the entire value chain of the food system through research, knowledge transfer and advisory services, practice-oriented projects and public relations work. Together, with practitioner partners, other research and advisory institutions, public bodies and non-governmental organisations in Europe and on other continents, FiBL works on projects aimed at safeguarding both global food security and the natural resource base on which life depends by means of organic agriculture and sustainable food systems. The six FiBL are committed to responsibility for people, animals and the environment, and to transparency and participation both internally and externally. For FiBL, respect for colleagues, cooperation partners and people in general as well as democratic decision-making are fundamental prerequisites of successful and globally recognised work.

The FiBL Group currently includes FiBL Switzerland (established in 1973), FiBL Germany (2001), FiBL Austria (2004), ÖMKi (Hungarian Research Institute of Organic Agriculture, 2011) and FiBL France (2017) as well as FiBL Europe (2017) which is jointly supported by the five national institutes.
FiBL and the organic sector in numbers

748 149
Increase in hectares under organic management in the European organic sector in 2021
Every year, FiBL publishes comprehensive statistics on the organic sector in the statistical yearbook “The World of Organic Agriculture”. Since the early 2000s it has been published jointly by FiBL and IFOAM – Organics International, the global umbrella organisation for organic agriculture. In 2021 the organic acreage in Europe increased by 748 149 hectares, corresponding to a 4.4 per cent increase in area compared to the year prior.

402
Employees in 2022
FiBL is growing: the six FiBL institutes employ a total of 402 people. In 2019 the number of employees stood at 319.

66
Per capita expenditure in euros in 2021

286
Projects in 2022
Searching for innovative, sustainable and forward-looking solutions: FiBL has been conducting scientific research in a total of 286 projects – with a particular focus on practical relevance.

42 000 000
FiBL Group’s total 2021 budget in euros
The six FiBL institutes had an annual budget of 42 million euros at their disposal. This allowed for the implementation of numerous research and advisory projects that continue to advance organic farming.

90
Peer-reviewed scientific papers in 2022
FiBL researchers published 90 papers in scientific journals, following peer review. They provide important insights for the future of organic agriculture.
Highlights

1991. The magazine is published jointly by Bio Suisse and FiBL.

2021

JANUARY
Swiss Bioaktuell magazine turns 30
CH. Bioaktuell has been publishing organic sector news and specialist information since 1991. The magazine is published jointly by Bio Suisse and FiBL.

FEBRUARY
We Care Standard takes off
DE. The We Care label, launched by FiBL Germany, is awarded to companies that focus on holistic sustainability.

MARCH
Adoption of the Africa Strategy
CH. The Africa strategy guides FiBL’s work in Africa up to 2025.

Launch of the EU-wide organic seed database
CH. The database increases the availability of organic seeds for European organic farmers.

MAY
FiBL Europe organises the first digital FiBL Open Day
EU. Some 5000 participants at the FiBL Open Day explored the issues surrounding organic agriculture.

JUNE
Database for organic livestock
DE. All available organic livestock for sale in Germany can be entered into the database.

Symposium on livestock ethics
CH. The symposium on the ethics of the utilisation and slaughter of livestock is organised by the Department of Arts, Media and Philosophy of the University of Basel and FiBL.

JULY
Prominent report on FiBL France
FR. Biodé, the renowned French magazine on organic agriculture, reports on the parasitology laboratory at FiBL France.

AUGUST
Support for the EAAP Conference
CH. As a co-organiser, FiBL had a strong representation at the EAAP (European Federation of Animal Science) conference in Davos, Switzerland.

SEPTEMBER
Tech & Bio, the principal organic fair in France
FR. FiBL France and the FiBL Switzerland’s Department Suisse Romande have a booth at the fair.

OCTOBER
“FiBL Focus” podcast launched
CH. This format is all about the latest findings from science and practice in agriculture, animal welfare and environmental protection.

December
Online course on organic tofu production
CH. 2021 was a turbulent year, but thanks to online course formats the coronavirus did not hamper knowledge transfer from research to practice.

FiBL’s Green Cotton / Seeding the Green Future project honoured
CH. With the SFIAR Award (Swiss Forum for Innovation in Agricultural Economy), organ-flourishing fungicide seedlings are awarded the “Tradition and Innovation Award in Agricultural Economy” at the Hungarian National Agriculture and Food Exhibition and Fair (OMÉK).

2022

JANUARY
New LegalNet network
DE. FiBL Germany and partners launch a new cross-crop-cultivar network for grain legumes.

FEBRUARY
Supporting the UN World Food Summit
DE. The United Nations Food Systems Summit takes place at national level in 2022 and is assisted by FiBL on behalf of Germany’s Federal Agency for Agriculture and Nutrition (Bundesanstalt für Landwirtschaft und Ernährung, BLE).

DECEMBER
Online course on organic tofu production
CH. 2021 was a turbulent year, but thanks to online course formats the coronavirus did not hamper knowledge transfer from research to practice.

FiBL’s Green Cotton / Seeding the Green Future project honoured
CH. With the SFIAR Award (Swiss Forum for Innovation in Agricultural Economy), organ-flourishing fungicide seedlings are awarded the “Tradition and Innovation Award in Agricultural Economy” at the Hungarian National Agriculture and Food Exhibition and Fair (OMÉK).

FEBRUARY
First “FiBL connect” event convened
CH. At the “FiBL connect” event convened by FiBL Switzerland, an open day aimed specifically at practitioners, a total of 170 farmers, colleagues from partner institutions and students attend the numerous panels and lectures on organic agriculture.

New FiBL Campus officially opened
CH. At a three-day event, FiBL Switzerland invites the public to get to know the new FiBL Campus in Frick.

JULY
Organic Field Days in Germany
DE. The Organic Field Days (Öko-Feldtage), attended by 11,500 people, receive a great deal of media attention and is well received.

SEPTMBER
Recognition of the first two organic cotton varieties in India
CH. The cultivars were developed as part of a participatory breeding programme run by FiBL Switzerland and various partners.

OCTOBER
Inauguration of FiBL ARTS
CH. An artwork inauguration ceremony is held for the first three artworks that won the national competition as part of FiBL Switzerland’s FiBL ARTS art programme.

NOVEMBER
Ways out of the climate crisis
CH. FiBL Switzerland contributes to the lecture series at the Gut Glodele Estate in Dübendorf on the topic of “Agriculture and climate change.”

DECEMBER
Better conditions for on-farm and field slaughter
CH. FiBL Switzerland organises an information event for the media about on-farm and field slaughter in connection with the amendment event for the corresponding Swiss Ordinance. It generates great media coverage.
Follow-ups
...what has happened in the meantime?

In four follow-ups we report on exciting developments and progress made in selected FiBL projects already presented in the 2019/2020 Activity Report.

FiBL Switzerland

Robust potato varieties for difficult environmental conditions
How did the potato variety trials progress? The year 2021 was a challenging one for organic potato producers, with a very wet summer and low temperatures. A large part of the harvest was lost to late blight. However, this also demonstrated which of the trialled varieties can cope well with this disease and still produce acceptable yields. Conversely, 2022 was characterised by heat and insufficient rainfall, so that the potatoes could be tested under environmental stress. In these two years, the cultivars Simonetta and Eminuelle stood out in particular: these are two waxy potato varieties that are robust as well as flavourful. They were included in the Swiss list of organic cultivars and will soon be available on the market.

fibl.org > search: “potato varieties”

FiBL Austria

Together for a green Seestadt
The “Essbare Seestadt” (Edible Seestadt) FiBL project presented in the previous Activity Report has morphed into an association. In Vienna’s Seestadt Aspern, one of Europe’s largest smart city model regions, an interdisciplinary team of scientists has come together to explore the potential of urban gardening in terms of costs, maintenance effort and climate impacts. In the non-profit association “Seestadtgrün”, residents are highly active in implementing a variety of greening initiatives in this part of Vienna.

seestadtgruen.at (in German)

The cow’s favourite food
In March 2022 and after two years of development, the dairy herd was able to graze in the “pasture laboratory” announced in the previous Activity Report for the first time on FiBL’s farm in Frick. It consists of sixteen strip plots sown with different herb-rich forage mixtures. Researchers observe the cows’ feeding behaviour here with the aim of deriving fundamentals of ethologically sound, varied and healthy dairy cow nutrition. Results from the study are expected in 2023.

fibl.org > search: “pasture laboratory”

FiBL Austria

Which of the lupines will win the race?
The search for robust high-protein crops continues. To promote the cultivation of the protein-rich white lupin, FiBL’s Plant Breeding Group is investigating and improving resistance to anthracnose, a fungal disease. As mentioned in the previous Activity Report, Joris Alkemade, as part of his dissertation, established a screening system to be used at an early stage of the plants’ development and identified genetic markers for resistance traits. In addition, PhD student András Patyi is now also looking for genetic markers related to low alkaloid content. FiBL is thus working on diagnostic tools to enable selection for resistance and sweetness in early breeding generations (marker-assisted selection). The best breeding lines are being further developed together with cereal breeder Getreidezüchtung Peter Kunz.

fibl.org > search: “lupins”
Carbon-neutral organic farming in Switzerland – an illusion?

In 2021/2022 FiBL, together with Bio Suisse, the umbrella organization of Swiss organic agriculture, prepared a study on the question of whether carbon-neutral organic agriculture in Switzerland is feasible and, if so, how it can be achieved. The study shows that to achieve carbon-neutral organic agriculture in Switzerland by 2040 will be a very significant challenge. It will require changes in both agricultural production and consumer behaviour.

For the first time, FiBL has compiled a comprehensive database on greenhouse gas reduction and compensation in organic agriculture and modelled various scenarios on how carbon-neutral organic agriculture could be achieved by 2040. The following results emerged from this investigation:

- Organic farm managers can reduce emissions by up to fifteen per cent through changes in feeding, livestock farm waste storage and arable and grassland management. A further forty-five per cent can be compensated directly through raising soil organic matter, the use of plant-based biochar, integration of agroforestry systems and indirectly through the expansion of on-farm photovoltaic systems.

- Consumers can reduce emissions by up to twenty-five per cent by reducing their consumption of animal products and by minimising food waste.

- Additional efforts in terms of novel techniques for emissions reduction in agriculture and consumption are needed to cover the remaining fifteen per cent on the carbon reduction pathway.

In addition to the organic farming sector, consumers as well as food processors, retailers and politicians are called upon to achieve the transformation of the food system to carbon neutrality by 2040. This requires above all the courage to go down new paths.

Markus Steffens, FiBL Switzerland

Soil

One step ahead: FiBL was the first institution to project climate neutrality for the organic farming sector of an entire country.

Earthworm burrow lined with plant-based biochar.
Working together for better soil quality

A network of forty-two farmers devoted five years to improving soil quality. FiBL provided scientific backstopping to the network and Proconseil delivered advisory services.

Farmers were encouraged to trial soil diagnostic tools with the aim of making them accessible for practical use. The soil analyses carried out at the start of the project showed that the soils were highly deficient in organic matter, with implications for soil structural stability, which was determined using the “spade test” as a soil diagnostic tool. However, the soil organic matter balances were generally sufficient.

This initial diagnosis led to a search for solutions and the establishment of eight thematic working groups: controlled traffic farming (working with permanent lanes), compaction, soil moisture sensors, fertiliser use and plant sap analyses, carbon sequestration and carbon balance, soil cultivation, mechanical weed management and green manures.

Through field visits, conferences and working groups, a variety of tools were compiled to characterise soils and agricultural practices, as well as a wide range of extension materials, including videos. Of particular note is a clever calculator for determining the intensity of soil cultivation (Soil Tillage Intensity Rating STIR). Thanks to this calculator, cultivation practices can now be adjusted with a view to minimising soil disturbance.

Raphaël Charles and Marina Wendling, FiBL Switzerland

Soil fertility innovation hub: self-diagnosis and advice
Website: fibl.org > search > Soil fertility innovation hub
Contacts: raphael.charles@fibl.org, marina.wendling@fibl.org
Funding: DGAV (Direction générale de l’agriculture, de la viticulture et des affaires vétérinaires) Vaud, DGE (Direction générale de l’environnement) Vaud
Project partners: Proconseil, Mandaterre, Direction générale de l’agriculture, de la viticulture et des affaires vétérinaires (DGAV), DGE (Direction générale de l’environnement) Vaud

The wheat of the future: linking climate change and soil biodiversity in the BIOFAIR project

The BIOFAIR project contributes to future food security by assessing the impact of climate change on soil biodiversity in wheat production. Long-term field trials and stakeholder engagement are at the core of FiBL’s activities in the project.

In the face of climate change, crop species and agricultural practices will require adaptation in order to produce high-quality food while mitigating the impact of agriculture on the environment. The main goal of BIOFAIR (Biodiversity of Soils and Farming Innovations for Improved Resilience in European Wheat Agro systems) is to assess the impacts of climate change and farming practices on soil biodiversity, plant productivity and quality of wheat.

With the participation of the Department of Soil Sciences of FiBL Switzerland, the project is developing several trials across Europe simulating the climatic conditions of 2094 to assess the impact of climate change on wheat production systems and soil biodiversity. The main task of FiBL Europe in this project is to ensure the co-construction process of the project experiments. To this end, FiBL Europe has created a board engaging European stakeholders related to the wheat sector. This board is consulted during the whole life of the project to ensure the adaptation of project activities to the needs of stakeholders.

This research was funded through the 2019–2020 Biodiverras joint call for research proposals, under the BiodivClim ERA-Net COFUND programme, and with the funding organisations Swiss National Science Foundation (SNSF) and the Research Foundation Flanders (FWO), Wallonia-Brussels Fund for Scientific Research (FNRS).

Lisa Haller, FiBL Europe and Sarah Petris-Symanczik, FiBL Switzerland

Soil sampling in the DOK long-term trial with the pneumatic soil corer Cobra in Therwil, Switzerland, during wheat flowering (Jennifer Michel, University of Liège, researcher; Marie-Elise Gonzales, FiBL, intern; Sandy Manfroy, University of Liège, researcher).

BIOFAIR – BIODiversity of soils and Farming Innovations for improved Resilience in European Wheat Agro systems
Website: fibl.org > themes/project > project database > BIOFAIR
Contacts: lisa.haller@fibl.org, sarah.symanczik@fibl.org
Funding: Biodiverras, Schweizerischer Nationalfonds (SNF), Research Foundation Flanders, Wallonia-Brussels Fund for Scientific Research
Project partners: Gentse Bio-Boerderij at the University of Ghent, University of Hohenheim, University of Ghent, IRD (National Research Institute for Agriculture, Food and Environment) Clermont-Ferrand, Estación Experimental de Zonas Áridas (CSIC) Almería

Soil sampling in the DOK long-term trial with the pneumatic soil corer Cobra in Therwil, Switzerland, during wheat flowering (Jennifer Michel, University of Liège, researcher; Marie-Elise Gonzales, FiBL, intern; Sandy Manfroy, University of Liège, researcher).

Climate project
Microorganisms such as fungi and bacteria colonize soils, plants and animals where they form stable communities. The microbiome refers to all the microorganisms in a habitat and their activities.

The microbiome connects all organisms: the soil is the source of the plant-associated microorganisms, which in turn are a major component of the microbiota in the gut of livestock and humans. These microorganisms cycle back to the soil in the form of manures.

Some soil microbes form a symbiosis with plants, specifically a relationship where both partners benefit. Arbuscular mycorrhizal fungi (arbuscular means specific mycorrhizal fungi, short: AMF) colonize the inside of plant roots, but their hyphal network also grows out into the soil. They can reach farther than the roots and take up nutrients such as phosphorus and nitrogen which they transport to the plants in exchange for carbohydrates.

FiBL develops three strategies to benefit from the microbiome in agriculture: 1) directly by applying microbes as biofertilizers, 2) indirectly through growing a diversity of plants, 3) finally by improving soil health in general with agricultural management practices such as reduced tillage, perennial forage legumes or agroforestry.

Inoculation with beneficial microbes
Inoculation with AMF is often successful in pot experiments, but responses are more variable in the field where inoculation success depends on soil properties and the local microbiome. In collaboration with Agroscope, fifty-four on-farm experiments were performed over three years. Maize was inoculated in spring, followed by yield assessment at harvest. FiBL identified a set of soil parameters that predict successful on-farm inoculation.

Using plants to influence the microbiome
Intercropping means that two crops are grown in mixtures on the same field. Typically, a cereal is combined with a legume which forms a symbiosis with nitrogen-fixing rhizobia, so that competition for nitrogen is reduced. FiBL performed field experiments with pea and barley. Some fungi in the roots were more abundant in diseased plants, while other microbes, including AMF, were more abundant in healthy plants. FiBL found that total yield was more stable in intercropped compared to pure stands, maybe due to contrasting drought sensitivity of both crop species.

Organic management for improved soil health
FiBL scientists compared soil properties and microbiome of five cocoa production systems in Bolivia. Similar to Swiss long-term trial DOK, research confirmed that the microbiome in organically managed systems was more diverse and showed higher microbial activity compared to long-term conventionally managed systems.

Natacha Bodenhausen, FiBL Switzerland

Gebert Rüf Microbiome, ReMIX, SNF Metagenome
Website: fibl.org > search: “microbiome”
Contact: natacha.bodenhausen@fibl.org
Funding: Gebert Rüf Stiftung, EU Horizon 2020, State Secretariat for Education, Research and Innovation SERI, Swiss National Science Foundation (SNSF)
Project partner: Agroscope

FiBL Microbiome Research

Some soil microbes form a symbiotic relationship with plants through the roots. FiBL tests strategies for the inoculation of arbuscular mycorrhizal fungi on maize roots.

Setting up the field experiment for the microbiome diagnostics project.
Tiny but mighty!
The potential of duckweed

Duckweeds are small plants that float on the water surface. They are among the most rapidly growing plants and are also very high in protein. FiBL is now undertaking research to study the extent to which these properties of duckweed can also be used to produce valuable feed.

Duckweed absorbs nitrogen from its nutrient medium, which can even be diluted slurry (liquid manure). This trait enables the plants to produce a much greater amount of protein per unit area and time than soybeans, while at the same time effectively recycling nutrients from the often abundantly available slurry.

Although duckweed has great potential, its targeted production is quite challenging. Only a small number of manufacturers worldwide engage in the production of feed using duckweed on a commercial scale and many primarily practical issues are as yet unresolved. The “Linsenpool” (duckweed pool) project aims to address some of these practical issues as well as important scientific questions. To this end, an outdoor pilot plant for duckweed production was built at FiBL Switzerland and operated commensurate with weather conditions. Among the outstanding issues is the optimisation of post-harvest processing. Since
Crop plants
FiBL Switzerland

Duckweed harvesting in the greenhouse gas experiment.

Duckweed has a high water content and conventional drying is energy-intensive, a variety of alternative processing methods are currently being tested. Does a liquid manure-based duckweed production system run the risk of emitting increased levels of greenhouse gases or ammonia, or can duckweed perhaps even reduce emissions? This question is also currently being investigated in a controlled trial. Preliminary results indicate that duckweed significantly reduces ammonia emissions.

Timo Stadtlander, FiBL Switzerland

New agricultural nutrient flows using water lentils
Website: themes/projects > project database > New agricultural nutrient flows using water lentils
Contact: timo.stadtlander@fibl.org
Funding: Mercator Foundation Switzerland, Vontobel Foundation Switzerland

RELACS coordinator Lucius Tamm reports on the results of the project, which was funded under the European Union’s Horizon 2020 research programme and coordinated by FiBL Switzerland and coordinated by FiBL Switzerland.

Organic farmers adhere to high standards in producing high-quality food – and they maintain environmental quality at the same time. However, organic farming needs continuous improvement to achieve its ambitious objectives. One of the aims of the RELACS (Replacement of contentious inputs in organic farming systems) research project was to develop cost-effective and environmentally friendly techniques to reduce the use of copper in crop protection.

With our research and practitioner partners, we have improved and tested four products that constitute alternatives to copper. These promise protection against important crop diseases in grapes, apples and vegetable crops and under different climatic conditions – either as stand-alone applications or in combination with low-dose copper treatments. This will make it possible to continue to reduce copper use in grapes and apples in coming years, provided the alternative treatments can gain official approval.

Lucius Tamm, FiBL Switzerland

RELACS – Replacement of contentious inputs in organic farming systems
Website: fibl.org > themes/projects > project database > RELACS
Contacts Department of Crop Sciences: lucius.tamm@fibl.org (RELACS Coordinator), barbara.fuening@fibl.org, hans-peter.scheurer@fibl.org, joelle.herforth@fibl.org
Contacts Department of Livestock Sciences: veronika.maurer@fibl.org, forian.leiber@fibl.org, michael.walkenhorst@fibl.org
Contact Department of Soil Sciences: else.buenemann@fibl.org
Funding: EU Horizon 2020
Project partners: fibl.org > Themen/Projekte > Projektdatenbank > RELACS

Interdisciplinary project: more on the project in the chapter on livestock, Reducing the use of veterinary drugs and synthetic vitamins in livestock husbandry

Four successful years of research on copper alternatives in the RELACS project

Plant diseases can destroy the grape harvest, which is why organic agriculture also needs crop pesticides – based on natural ingredients.
Flowers are a spider’s best friend

Tailor-made sown wildflower strips, adapted to local conditions and climatic pressures, promote biodiversity in agricultural areas. The composition of the species-rich flower cover determines the diversity and frequency at which beneficial insects occur and thus promotes essential ecosystem services such as pollination and natural pest control.

With more than one million species described worldwide, insects are the group of organisms featuring the highest level of species diversity. However, habitat degradation due to agricultural intensification and climate change threaten their diversity in Switzerland, as elsewhere. Our aim is to actively promote biodiversity in agricultural areas and thus safeguard vital ecosystem services. The focus is on species-rich wildflower strips consisting of plant species that are native and characteristic of the location. These not only botanically enrich the often species-poor farmland, but primarily create a food supply and habitat for beneficial insects. A project entitled “Innovative Blühstreifen zur nachhaltigen Verbesserung von Obstkulturen” (Innovative flower strips for sustainable orchard production) investigated from 2019 to 2022 innovative sown wildflower strips for the sustainable improvement of fruit crop production. Natural aphid regulation was found to be increased significantly in cherry orchards by providing sown wildflower strips. Spiders benefit from alternative prey and relatively undisturbed habitat. A comparison between 2020 and 2021 found that in the spring of 2021, in which beneficial insects faced rather difficult weather conditions, hoverflies, ladybirds and common lacewings were fostered by wildflower strips as these alleviated bottlenecks in the beneficials’ food supply.

It’s all in the right mix

The pressures exerted on plants by an increasingly dry climate were addressed in a project entitled “Blühende Rebberge für Mensch und Natur” (Use of functional agro-biodiversity to improve ecosystem services in vineyards) conducted from 2018 to 2021 in more than 70 vineyard plots. The seed mixes tested consisted of more than 30 native plant species, including deep-rooting species with a view to promoting soil biodiversity. The optimised seed mix is currently in the approval process and is used as a measure to promote biodiversity as part of the “VinBioDiv” Interreg project (2021 to 2023). Through its investigations of wild bees in vineyards and other crops, the 2017 to 2022 project on “Bienenfreundliche Landwirtschaft im Kanton Aargau” (Bee-friendly agriculture in the canton of Aargau) similarly showed that a flower cover tailored to the site is crucial to insect diversity on agricultural land.

Fabian Cahenzli, Bas Steinemann and Lukas Pfiffner, FiBL Switzerland

< A rich flower cover promotes a wide range of insects.

Species-rich wildflower strips promote beneficials in vineyards.
In view of the mounting challenges posed by climate change, biodiversity loss and declining soil fertility, the situation in organic farming has worsened: in addition to organically produced seeds, more organically bred varieties are needed which also allow for innovative forms of cultivation. More flexible policy frameworks are also required.

A broad portfolio of crop species and cultivars in organic farming is key to a sustainable food system. However, there is a lack of organically propagated seeds and robust cultivars that are specifically adapted to organic agriculture and drastically changing climatic conditions.

LIVESEED was an interdisciplinary and multidisciplinary European project with fifty partner organisations to promote organic seeds and crop breeding. It was coordinated by IFOAM Organics Europe and FiBL Switzerland. In this context, the market potential of organically propagated seeds was determined for the first time. The finding is that approximately fifty per cent more organic seed would be needed to meet current demand. To close this supply gap, the project established an EU-wide database for organic seed and numerous training courses and workshops on organic seed production and seed health were held.

In parallel, the concept of systems-based breeding was developed to achieve the sustainability goals. Phenotypic tests were devised and genetic markers identified for various crops with a view to breeding disease-resistant and stress-tolerant varieties. Moreover, a network for participatory organic breeding initiatives was established. The aim is to boost buffering capacity against unpredictable weather events by means of increased crop genetic biodiversity in the form of genetically heterogeneous material such as composite cross populations, dynamic populations, and landrace selections which may now also be grown in organic agriculture. Varietal mixtures, breeding of neglected crop species, breeding for mixed cropping and agroforestry similarly increase resilience to weather extremes and mitigate the risk of yield loss. For example, FiBL is working with Getreidezüchtung (cereal breeding) Peter Kunz (CZPK) to reintroduce the white lupin. Through extensive testing of genetic resources, crosses and subsequent selection, interesting breeding strains have been developed.

In addition to promoting organically bred cultivars, it is important that other cultivars are also tested on-farm for their suitability for cultivation under real-life organic conditions, allowing farmers to choose the best suited variety for their location. Recommendations for policymakers and the seed sector were derived from the results and published. The follow-up project, LiveSeeding, commenced in October 2022.

Monika Messmer & Mariateresa Lazzaro, FiBL Switzerland

LIVESEED – Improve performance of organic agriculture by boosting organic seed and plant breeding efforts across Europe
Website: fibl.org > themes/projects > project database > LIVESEED
Contact: monika.messmer@fibl.org, mariateresa.lazzaro@fibl.org
Funding: EU Horizon 2020, Swiss State Secretariat for Education, Research, and Innovation SERI
Project partners: fibl.org/themes/projects > project database > LIVESEED
Video: youtube.com > Organic plant breeding and its contribution to food production
Are we keeping them for too short a time?
On the productive lifespan of Swiss dairy cows

Almost half of all dairy cows do not reach their third lactation, even though the highest milk yields are not obtained until the cows are five to six years of age. Lesser diseases and fertility problems appear to be among the reasons for shortened productive lives, but that is certainly not the full story. Longer productive lifespans would also benefit the climate, as less methane per litre of milk would be generated because fewer young animals would have to be bred for milk production.

A research project initiated by FiBL, BFH (Bern University of Applied Sciences) and Agridea (agricultural advisory centre of the cantonal specialist agencies) is investigating present causes and future strategies. FiBL is currently evaluating information pertaining to approximately four million cows. This analysis has made it possible to reproduce the trends in dairy cows’ productive lifespans over the course of several decades. For about ten years now that figure has been stable at between three and four years.

Around seventy specifically selected representative dairy farmers gave us in-depth insights into their operations by means of a survey. Thirty of them subsequently opened their doors to us, giving us access to their barns and cows. Half of the herds had a particularly long or short productive lifespan respectively. The health parameters of the herds that were on average one to two years older were largely on par with those of younger herds. Regardless of their herds’ age, the farm managers agreed that cows should be productive milk producers for significantly longer than six years.

Michael Walkenhorst, FiBL Switzerland

Increasing longevity of Swiss dairy cows: factors, future scenarios and strategy development
Website: fibl.org > themes/projects > project database
> Increasing longevity of Swiss dairy cows
themes.agridea.ch > Nutzungsdauer Schweizer Milchkühe
(in German/French)
Contacts: rennie.eppenstein@fibl.org, michael.walkenhorst@fibl.org, robert.home@fibl.org
Funding: Federal Office for Agriculture FOAG, Swiss cattle breeders’ association, Bio Suisse, IP-Suisse, Migros, Swiss milk producers, Fondation Sur la Croix
Project partners: Bern University of Applied Sciences, AGRIDEA, Federal Office for Agriculture FOAG, Swiss cattle breeders’ association, Bio Suisse, IP-Suisse, Migros, Swiss milk producers

Interdisciplinary project: more on the project in the chapter on nutrition and politics, Why the extension of a dairy cow’s productive lifespan matters economically

Berge, the oldest cow in the FiBL herd, has reached the age of twenty.

Lower methane emissions per litre of milk: Let the cows grow older and the climate will be better off.
Can sheep replace tractors?

Grazing orchards during the growing season is a practice that is becoming ever more popular. It is however not entirely risk-free for trees and sheep.

Driven by the climate: sheep farmers in search of additional grazing land

Rising temperatures and lower amounts of summer rainfall mean that sheep farmers are now looking for additional grazing areas: Vineyards, green cover areas, forest roads and orchards. Established green cover in orchards, which is widely used in organic fruit production to protect the soil and promote species diversity, could be an interesting source of forage. The grass, which is normally mulched, would thus be converted in situ.

Technical constraints such as chronic copper poisoning of sheep and damage to trees from bark stripping and browsing are major obstacles that give rise to hesitation on the part of both sheep farmers and fruit growers. Therefore it is crucial that alternative means of protection are available.

As part of the ECORCE project (Étudier la Cohabitation de l’élevage Ovin et de l’Arboriculture – Studies about the association of sheep breeding and fruit tree production), FiBL France assessed protection measures for trunks (protective sleeves, tree bark wound sealers) and crowns (electric fencing, repellents) and the risk to sheep of copper poisoning.

Trees and sheep: not an impossible coexistence

Electric fencing has proven to be effective, but their installation is somewhat cumbersome. Spraying with sheep faeces reduced browsing of fruit tree leaves by sheep during the first four days of grazing. Bark stripping by sheep has rarely been observed; this suggests that the specific nutrient needs of sheep are met by other types of feed.

Copper sprayed on trees to protect them from disease poses a risk of poisoning to sheep – especially during spring grazing, the main period during which copper is applied. Initial results indicate that the application of copper and the grazing of sheep are too close together and can have a strong, potentially harmful effect on the sheep.

Observations of sheep feeding behaviour are ongoing as part of the project. Information is also being collected on the technical-economic and organisational requirements with a view to deducing model recommendations for practitioners so that grazing under fruit trees can be made safer and more sustainable.

Martin Trouillard and Florence Arsonneau, FiBL France
Reducing the use of veterinary drugs and synthetic vitamins in livestock husbandry

Farm animals are exposed to parasitic and bacterial infections, which are often treated with antiparasitics or antibiotics. However, excessive use of these substances can lead to antibiotic resistance in pathogens and adversely impact on the environment.

FiBL Switzerland has long been researching preventive measures and plant-based preparations to significantly reduce the use of these pharmaceuticals. Another class of substances used in livestock farming, as a feed additive, are synthetic vitamins; their use in organic agriculture must be reduced to a minimum. To this end, a new field of research has been established at FiBL aimed at reducing the use of vitamins from non-natural sources in animal feed.

Abstain without putting the animals at risk

The challenge is to reduce the use of primarily helpful substances that bring with them potentially problematic side effects, and to do so without compromising animal health. The interdisciplinary European research project RELACS (Replacement of Contentious Inputs in Organic Farming Systems) has addressed these issues in recent years. RELACS was initiated and is led by the Department of Crop Sciences at FiBL Switzerland. It pursues reductions in the use of problematic substances in organic agriculture as a whole. In cooperation with other European research institutions, FiBL has developed a number of promising measures: With the help of an advisory tool and essential oils, for example, antibiotics use in dairying can be reduced significantly.

Tannin-rich heather as a feed component and a nematode-trapping fungus (Duddingtonia flagrans) help to reduce the use of anthelmintics in sheep. Nematodes are roundworms that can occur as intestinal parasites in the digestive tract of sheep. With regard to synthetic vitamins, it was shown that it is possible to reduce the use of vitamin E in cattle rations and of vitamin B2 in poultry rations by twenty to forty per cent without risking the animals’ health and performance. FiBL was thus able to deliver new solutions.

Florian Leiber, Veronika Maurer and Michael Walkenhorst, FiBL Switzerland

RELACS – Replacement of contentious inputs in organic farming systems

Website: fibl.org > themen/projects > project database > RELACS

Contacts Department of Crop Sciences:
Lucius Tamm@fibl.org (RELACS coordinator)
barbara.foumory@fibl.org, hans-jakob.schaerer@fibl.org
joelle.herforth@fibl.org

Contacts Department of Livestock Sciences:
veronika.maurer@fibl.org, florian.leiber@fibl.org,
michael.walkenhorst@fibl.org

Contact Department of Soil Science: else.buenemann@fibl.org

Funding: EU Horizon 2020

Project partners: fibl.org > Themen/Projekte > Projektdatenbank > RELACS

Interdisciplinary project: more on the project in the chapter on crop plants, Four successful years of research on copper alternatives in the RELACS project.

< Sufficient outdoor exercise is a precondition for reduced use of vitamin B.

> Heather is a natural remedy for gastrointestinal parasites.
The Department of Livestock Sciences at FiBL Switzerland has calculated that the economically and environmentally optimum length of productive lifespan of Swiss dairy cows is between six and seven lactations, but the current average life is around half that, which is both inefficient and ethically questionable.

Researchers from the Department of Food System Sciences interviewed expert representatives of breeder’s associations, vets, retailers, agronomists, NGOs, government, and farm advisors to investigate the systemic barriers to extending the length of Swiss cows’ productive lives.

Breeding associations, vets, advisors, and government agencies already commit resources to extending the productive life, but the existing system is so entrenched that farmers are locked into a behaviour that is not optimal and system change can only take place slowly. A faster system change could be led by a collective and organised demand from dairy farmers, but such a demand is only likely if farmers believe their profits will increase. Dairy farmers commonly base their decisions (per animal) on high fertility and milk production and assumptions that veterinary costs will be low in the years when production is high. Applying these simplified decision criteria facilitates readily observable production outcomes and leads farmers to prefer high-performance, but less robust, animals.

However, the simplification leads to insufficient consideration of important variables and the interactions between them. For example, production from high milk performance cows drops, while their susceptibility to disease increases, rapidly as they age. In contrast, the production from lower performing, and more robust, cows will typically continue for a longer period, so they eventually produce more milk, with fewer production, veterinary and transaction costs per kilogram of milk, as the cows are replaced less often. This example, although it is also excessively simplified, illustrates that oversimplification of decision criteria can lead to sub-optimal decision-making and an average productive life that is economically and environmentally inefficient.

Collaborative reflection, led by breeder’s associations, vets, and advisors, and the further development of the

Why the extension of a dairy cow’s productive lifespan matters economically

The Department of Livestock Sciences at FiBL Switzerland has calculated that the economically and environmentally optimum length of productive lifespan of Swiss dairy cows is between six and seven lactations, but the current average life is around half that, which is both inefficient and ethically questionable.

Researchers from the Department of Food System Sciences interviewed expert representatives of breeder’s associations, vets, retailers, agronomists, NGOs, government, and farm advisors to investigate the systemic barriers to extending the length of Swiss cows’ productive lives.

Breeding associations, vets, advisors, and government agencies already commit resources to extending the productive life, but the existing system is so entrenched that farmers are locked into a behaviour that is not optimal and system change can only take place slowly. A faster system change could be led by a collective and organised demand from dairy farmers, but such a demand is only likely if farmers believe their profits will increase. Dairy farmers commonly base their decisions (per animal) on high fertility and milk production and assumptions that veterinary costs will be low in the years when production is high. Applying these simplified decision criteria facilitates readily observable production outcomes and leads farmers to prefer high-performance, but less robust, animals.

However, the simplification leads to insufficient consideration of important variables and the interactions between them. For example, production from high milk performance cows drops, while their susceptibility to disease increases, rapidly as they age. In contrast, the production from lower performing, and more robust, cows will typically continue for a longer period, so they eventually produce more milk, with fewer production, veterinary and transaction costs per kilogram of milk, as the cows are replaced less often. This example, although it is also excessively simplified, illustrates that oversimplification of decision criteria can lead to sub-optimal decision-making and an average productive life that is economically and environmentally inefficient.

Collaborative reflection, led by breeder’s associations, vets, and advisors, and the further development of the

Why the extension of a dairy cow’s productive lifespan matters economically

The Department of Livestock Sciences at FiBL Switzerland has calculated that the economically and environmentally optimum length of productive lifespan of Swiss dairy cows is between six and seven lactations, but the current average life is around half that, which is both inefficient and ethically questionable.

Researchers from the Department of Food System Sciences interviewed expert representatives of breeder’s associations, vets, retailers, agronomists, NGOs, government, and farm advisors to investigate the systemic barriers to extending the length of Swiss cows’ productive lives.

Breeding associations, vets, advisors, and government agencies already commit resources to extending the productive life, but the existing system is so entrenched that farmers are locked into a behaviour that is not optimal and system change can only take place slowly. A faster system change could be led by a collective and organised demand from dairy farmers, but such a demand is only likely if farmers believe their profits will increase. Dairy farmers commonly base their decisions (per animal) on high fertility and milk production and assumptions that veterinary costs will be low in the years when production is high. Applying these simplified decision criteria facilitates readily observable production outcomes and leads farmers to prefer high-performance, but less robust, animals.

However, the simplification leads to insufficient consideration of important variables and the interactions between them. For example, production from high milk performance cows drops, while their susceptibility to disease increases, rapidly as they age. In contrast, the production from lower performing, and more robust, cows will typically continue for a longer period, so they eventually produce more milk, with fewer production, veterinary and transaction costs per kilogram of milk, as the cows are replaced less often. This example, although it is also excessively simplified, illustrates that oversimplification of decision criteria can lead to sub-optimal decision-making and an average productive life that is economically and environmentally inefficient.

Collaborative reflection, led by breeder’s associations, vets, and advisors, and the further development of the

Modern technology gives farmers access to data on their dairy herd. However, culling decisions are often based on subjective criteria.

The majority of dairy cows are culled not primarily because of low milk yields, but because of udder health or fertility problems.
Regional foods in school catering

In the Hessian districts of Lahn-Dill and Giessen, the “Nah.Land.Küche – Die Region im Kochtopf” project, which loosely translates as “nearby rural cuisine – catering from the region”, is exploring how schoolchildren can be served regional organic products more frequently. The project is being carried out by FiBL Germany and the Ecozept GbR consultancy, and is led by the “Ökomodell-Region Lahn-Dill-Giessen” eco-model region.

What is it about?

For two and a half years − from mid-2021 to the end of 2023 − the project team is assisting eight schools and six school caterers in the Lahn-Dill-Giessen eco-model region on their paths to serving more organic food from the region. The focus is on establishing value chains all the way from farms to catering kitchens.

The bottleneck: regional processing

Although organics already holds a share of roughly twenty-five per cent in the agricultural area of the Lahn-Dill-Giessen district, there are still some barriers on the path from farms to caterers. In addition to the issue of cost, the lack of a processing structure and local logistics play a major role. As part of the project, experts are working to close gaps in processing, for example by providing support for the conversion to organic processing or advice for targeted investments.

First successes

After just one year, new partnerships have already been established through many discussions with stakeholders. For example, some schools involved in the project now receive weekly deliveries of fresh potatoes and eggs, spelt pasta and pumpkins from the region. Going forward, the aim is to consolidate and strategically expand the supply relationships that have been established.

Nicole Nefzger, FiBL Germany

In May 2022, organic Hokkaido pumpkins were planted into mulch. In November, dishes made from these regional pumpkins were served to the school’s students.
An organic future

New and appropriate measures and framework conditions are needed to further support the expansion of organic agriculture. The "Zukunft Bio 2030" (future of organic 2030) project is working on the delivery of tangible stimuli for the advancement of organic agriculture in Austria by 2030.

The project team is working on selected measures that were devised in the predecessor project “Bio2030” together with a wide range of stakeholders. In four work packages, tangible strategies are identified to increase knowledge exchange in the entire organic value chain, between research, extension and organic farming practice. One proposal is to establish a network of organic research farms. Educational concepts for sustainable organics in public catering. The implementation of legally binding organic certification in the out-of-home sector.

Some of the proposals are also to be included in the upcoming Austrian Organic Action Programme and will thus specify tangible objectives for the further development of organic farming, such as the strategic strengthening of organic knowledge systems or the significant advancement of organic sales in the out-of-home sector.

Elisabeth Klingbacher, FiBL Austria

“Zukunft Bio 2030”: Implementation of selected measures to strengthen organic agriculture in Austria

Contact: susanne.kummer@fibl.org

Funding: Federal Ministry of the Republic of Austria for Agriculture, Forestry, Regions and Water Management

We Care

Comprehensive sustainability instead of greenwashing

Sustainability is “in” and there are many companies that like to use it to forge a green image for themselves. The We Care label developed by FiBL Germany is the first comprehensive standard for an across-the-board assessment of a company’s management system.

“The We Care label calls for responsibility along the supply chain: from production to transport, processing and all the way to the shelf,” says Axel Wirz, We Care project manager. If, for example, a company’s coffee is We Care-labelled, it means that a comprehensive assessment was made of 164 criteria in the four areas of action, namely corporate governance, supply chain management, environmental management and managerial responsibility towards employees. The numerous criteria therefore apply both in the products’ country of origin and in the country where the goods are further processed and marketed. Transport must be organised in a way that saves resources, and packaging must be equally environmentally friendly.

“With We Care certification, companies highlight that they approach sustainability from the ground up. They also see the standard as an opportunity to repeatedly put their internal processes to the test and advance them further,” Wirz explains. At the same time, however, he admits that “it is difficult to communicate the complex standard to consumers. Therefore, the We Care label is currently mainly used in communication within companies and less so with consumers.” Wirz is working to change this and sees the We Care label users as committed pioneers who document their honest actions. We Care is a guideline for highest quality standards and risk minimisation in the supply chain, a certification system that signifies comprehensive sustainability,” says Wirz.

Hella Hansel, FiBL Germany

We Care: A first in comprehensive sustainability standards

Website: we-care-siegel.org

Contact: axel.wirz@fibl.org

Funding: license fees

A campaign to put more organic food on plates – “Zukunft Bio 2030” is campaigning for the implementation of selected measures to strengthen organic farming in Austria.
Understandably conveying climate-friendly farming: now also via the FiBL podcast.
Enhancing biodiversity – advising farms

Intensive agriculture, the introduction of non-native species, construction and habitat fragmentation, but also land abandonment in mountain regions are drivers of a sharp decline in biodiversity in Switzerland, as elsewhere.

Over the past two years, the conservation and promotion of biodiversity has been a focus of FiBL’s advisory services. The team led by Véronique Chevillat and Theres Rutz advises farmers on how to specifically promote biodiversity on their farms. The team draws on a great deal of advisory experience and on the results of the FiBL project entitled “mit Vielfalt punkten” (scoring with diversity).

The advisory services focus on publications for a practitioner audience and information in agricultural media, field visits and whole-farm advisory. Consultations are conducted directly on the farm in order to gain an understanding of the farm situation and to be able to ensure that the recommendations take account of the interests of farm managers and family members as well as work processes and workloads.

Véronique Chevillat and Theres Rutz know that when farmers ask for advice, they have often already looked into the issue of biodiversity, so they feed their own ideas and visions into the process. Sometimes, however, effective measures are not considered. The FiBL advisors’ extra eyes on the process help to identify additional potential and drive action.

The individually tailored advice provides each farm with target-oriented suggestions for promoting biodiversity. This can involve the enhancement of existing elements such as meadows, where cutting regimes can be adapted. At the same time, new elements can be integrated, such as hedgerows or arable field margins. In order for the measures to be maintained over the long term and to exert a sustained effect, it is very important that they can be well integrated into the farm routine.

Small measures or adjustments to farm management can have a big impact on biodiversity. For example, the creation of small-scale structures such as strips of old grass or clearance cairns can create refuges, nesting and hibernation sites for insects, amphibians or reptiles. What may at first glance look untidy, on closer inspection creates space for biodiversity to flourish. In this respect, the two advisors need to encourage a rethink not only in farming.

Véronique Chevillat and Theres Rutz, FiBL Switzerland

The good food concept

The “School of Food” (“Schule des Essens”), an educational project aimed at teaching sustainable nutrition, has a new target group. In addition to schoolchildren, apprentices now also learn about what constitutes sustainable food. They are taught in a scientifically sound and joyful way and also learn that, above all, sustainable food tastes great.

In the “Schule des Essens goes Lehrlinge” (School of food goes apprentices) project, apprentices look at the connections between nutrition and the environment. They discuss options for achieving sustainable nutrition in their private and professional environment and also reflect on their readiness for individual change. Moreover, they get to enjoy gastronomic delights as they cook and eat together, using ingredients produced and prepared in a climate-friendly way.

The one-day workshops, which have so far been conducted in conjunction with three cooperating companies, have covered sustainable meat consumption and learning to appreciate the whole animal “from nose to tail” as well as climate-friendly food procurement in the company.

Three impulse videos, created together with the trainees, as well as accompanying materials, are available free of charge on a dedicated YouTube channel. They are intended to encourage other companies to take up the topic with the trainees and promote healthy and climate-friendly catering.

“School of food goes apprentices” has been taken up well by the young people. Moreover, the project received the Austrian SDG Award 2021. This gives further encouragement to the two project leaders Andrea Fičala and Theres Rathmanner to communicate sustainable nutrition and its contribution to the achievement of the Sustainable Development Goals to (young) people in a practical and joyful way.

Elisabeth Klingbacher, FiBL Austria
FiBL supports organic producers in breeding a new pig breed. This involves crossing different breeds that bring with them traits that have proven to be particularly useful for pig husbandry on organic farms. The project “Our Pig”, which was initiated by producers, was able to make available the first animals in 2022. These represent an important basis for further breeding work.

A farmer-led breeding project

Intensive pig breeding and fattening geared towards maximum performance is not in line with the basic tenets of organic agriculture. It is for this reason that a number of farmers, in cooperation with Demeter, initiated the “Unser Hausschwein” breeding project. FiBL assisted with scientific advice and coordinated the practical work. The twenty or so breeders envisage pigs that are adapted to organic farming in Switzerland, are undemanding and robust, and have only a moderate reproductive output. Moreover, the animals should be particularly well suited for outdoor keeping.

Targeted cross-breeding

In 2017, at the start of the project, breeds were selected that already displayed some of the desired characteristics. These include the more intensive Edelschwein and Duroc breeds and the more extensive Turopolje pig and Swabian-Hall swine breeds. For the project, eight Swabian-Hall breeding animals were imported from Germany in 2018, as this breed had not previously been available in Switzerland. These breeds are crossbred in such a way that a four-breed cross results after just two generations. The first of these animals were born in August 2022. The piglets’ fattening performance, health status and meat quality as well as other criteria relevant for breeding are now documented and animals are selected for further breeding.

To ensure that breeding work can continue after the end of the project, the alternative pig breeding association for Switzerland, “Verein Alternative Schweinezucht Schweiz (ASZS)” was established in the spring of 2022.

Outdoor keeping – discussing the challenges

Managing the pigs in outdoor systems is a demanding task and solutions must be individually tailored to each farm. Animal husbandry, processing and sales are discussed at regular themed meetings. This promotes exchange between farmers. The latest findings from FiBL’s breeding work are also presented at these meetings. By 2028, the project leaders expect to have established breeding traits that may result in a new breed.

Anna Jenni and Barbara Früh, FiBL Switzerland

They have arrived at last: The first final crosses of the “Our pig” project.

Farm managers are supported in the implementation of outdoor livestock systems.

The piglets already enjoy outdoor access during the suckling period.

< Who will become a breeder? The final crosses showing desirable traits are selected for further breeding at approx. sixty kilogram of weight.
Supporting agroecology transition across Europe

How do we prepare for the decreasing availability or the deterioration of natural resources? How can we mitigate the loss of biodiversity and combat the impact of climate change within the agricultural system? With agroecology lies the potential to address these challenges and contribute to the transition toward more sustainable food systems in Europe.

The European Commission, which underpins the European Partnership on Agroecology provisionally entitled “Accelerating farming systems transition: agroecology living labs and research infrastructures”, believes that open innovation arrangements, in particular living labs and research infrastructures, are tools which can make a significant contribution to boosting agroecology in Europe. Building on this, the ALL-Ready (Agricultural Living Labs Ready) project aims to prepare the framework for a future European network of agro-ecological living labs and research infrastructure that will enable the transition to agroecology across Europe relying on participatory, real-life experimentation, paving the way for agroecological transition throughout Europe.

Organisations joining the network are committed to the following objectives: 1. promoting knowledge and innovation 2. promoting resilience, sustainability and diversity 3. strengthening climate change mitigation and adaptation 4. recognising synergies between ecosystem functions 5. promotion of efficient and responsible use of natural resources 6. development of circular and solidarity economies; a form of exchange of goods and/or money that aims to promote social interests more strongly.

Making the results more robust with a Pilot Network
The main activities of the ALL-Ready project include the establishment and maintenance of a small-scale pilot network (led by ÖMKi), including agroecology living labs, research infrastructures, and other new innovations from Europe. The pilot network acts as a testbed to experiment and to gather feedback on the tools, concepts and recommendations for action developed within the project. At the same time, cooperation between the different living labs and research infrastructures is strengthened through joint activities.

Despite its young age, the participatory work in the pilot network already resulted in a set of validated expectations and needs for the network, with co-created cooperative themes and an action plan based on their agroecological interests and activities.

Conclusion
The project has passed its first half and is well on its way to achieving its goals. The main focus for the remainder of the project, apart from real-life experimentation, is the development of an implementation strategy for future partnerships. This includes the planning of activities, recommendations for an extension to the whole EU area, making policy recommendations as well as highlighting the benefits of membership.

Korinna Varga, ÖMKi
With organic farming against climate change in the global south

The SysCom program has been continuously assessing the performance of organic vs. conventional agricultural productions systems in Kenya, India and Bolivia since its establishment in 2007. The findings of these long-term field experiments and accompanying participatory on-farm research with farmers offer some clear messages to climate change adaptation and mitigation.

Organic farming systems have a considerable mitigation potential

The FiBL long-term trials in Kenya and India have shown that organic crop rotation systems are accumulating organic carbon in the soil, reversing decade long trends in soil depletion and “locking in” carbon within healthy soils. Organic cocoa agroforestry systems do not only store considerably more carbon in the living biomass of plants than cocoa monoculture systems, but also have drastically reduced environmental impacts due to the considerable reduction of fossil energy-based fuels, fertilizers and pesticides compared to conventionally managed cocoa agroforestry systems.

Resilient organic cropping systems are a suitable tool for climate change adaptation

The trials in Bolivia show that organic cocoa agroforestry systems are better able to regulate microclimate, buffer strong rainfall events and reduce erosion, resulting in more stable water cycles and better soil health. Organic crop rotation systems allow for flexible adaptation to changes in weather patterns and pest incidence, while benefitting from a multitude of agroecological interactions (such as pest and weed control, nitrogen fixation, increase of soil organic carbon). Some of these effects have only been visible after nearly ten years of consequent organic management practice, though.

Upcoming topics FiBL is working on in close cooperation and participatory research with farmers are multiple use structural elements such as hedgerows accompanying the organic systems to function as predator habitat, trap crops for pests and physical barriers mitigating erosion and nutrient loss and supporting rainwater harvesting strategies.
Conclusions

- Organic farming offers effective tools for climate change mitigation and adaptation in the tropics and subtropics.
- Adaptation of organic production systems to the changing local climate is pivotal to safeguard farmers' livelihoods.

Marc Cotter, Beate Huber and Laura Armengot, FiBL Switzerland

Agribiodiversity for improved food security and nutrition

Global warming and unpredictable precipitation patterns have burdened the peasants, who lack the capacity and resources to adapt to such climatic variations. Thereby, the most important strategy to cope with such uncertain climatic factors is to diversify production, involving not only a wider range of crops but also livestock for optimal nutrient cycling. Yet, over the last 50 years, agrobiodiversity has declined rapidly, negatively affecting the resilience of agricultural production, long-term soil fertility, and locally available food diversity.

The project CROPS4HD (Consumption of Resilient Orphan Crops & Products for Healthier Diets) is working in Tanzania, Tchad, Niger, and India to improve nutrition security by helping smallholder farmers diversify their production by introducing so-called ‘neglected’ or ‘underutilized’ species. These are crops that have excellent nutritional properties but were somehow abandoned for the lack of market demand or a better understanding about their health attributes and their valuable use in local dishes. In India, for instance, as part of a participatory process involving farmers, processors, retailers and nutritionists, different millet varieties were prioritized, helping to substitute especially rice that is much less nutritious. In Niger and Tchad, market actors are working together to promote the production and use of Bambara peanuts and Moringa, both containing high levels of protein.

Your food choices of today impact those of the next generations

Climate change is increasingly threatening worldwide food security. In the global South, FiBL collaborates with international and local partners to help smallholder farmers implement agroecological practices within more diverse production systems that better cope with climatic variations while contributing to a more balanced, healthy diet.

A Swissaid representative and farmer evaluating together coconut quality under banana-coconut and maize cultivation.
Creating demand, promoting supply and influencing relevant policies

Crops4HD works on both the demand and the supply side. To create demand, it works especially with nutritionists, chefs, processors, and retailers to make especially urban consumers aware of the nutritional benefits involved in each of the prioritized ‘neglected’ crops. In rural contexts, cooking classes as part of a broader ‘nutrition education’ have proven most effective for stimulating interest for these crops among rural consumers. On the supply side, the project works with farmer groups and local extension staff to introduce the different prioritized crops into smallholders’ production systems. Here, the involvement of women is critical, as they are often in charge to grow minor crops, especially those involving less acreage and often used for self-consumption. To make sure that only the most promising varieties are cultivated by farmers, cultivation trials are implemented together with local research and extension organizations and on-farm, which at the same time serve as ‘participatory learning plots’. At a higher level, the project lobbies for appropriate policies in favour of equitable seed and food markets, respecting the sovereignty of farmers about their cultivars.

Conclusions

• Demand: Nutrition benefits must be well communicated and understood to create tangible demand for the project’s prioritized ‘neglected’ crops.

• Supply: Accessibility of adapted seeds and the successful use of agroecological practices are both critical to achieve good crop yields while promoting long-term soil fertility.

• Policy: Legal framework conditions must ensure farmers’ rights to propagate, exchange and sell their seeds.

Amritbir Riar and Thomas Bernet, FiBL Switzerland

CROPS4HD – Consumption of Resilient Orphan Crops & Products for Healthier Diets

Website: fibl.org > themes/projects > project database > CROPS4HD
Contact: amritbir.riar@fibl.org
Funding: Swiss Agency for Development and Cooperation SDC, Liechtensteinscher Entwicklungsdienst (LED)
Project partners: SWISSAID, Alliance for Food Sovereignty in Africa (AFSA), Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), World Vegetable Centre (WVC), Association for Plant Breeding for the Benefit of Society (APRREBES), GRAIN

Tanzanian farmers evaluating the effect of different agroecological practices in a demo plot.

Farmers comparing the diversity of their stored bambara bean cultivars in Chad.

A FiBL seed and biodiversity expert training local researchers in on-farm cultivar evaluation.
In the West African Sahel, land degradation and unpredictable precipitation severely affect local agriculture and livelihoods. Systematic integration of crops, shrubs and livestock together with organic and conservation agriculture practices, have significant potential to improve soils and yields and build resilience. The FiBL coordinated Horizon 2020 project, SustainSahel, investigates redesign typologies in close collaboration with farmers to validate existing practices and enable novel practices to emerge.

Dryland regions, such as the Sahel, face many existing and emerging challenges, increasing due to climate change. A major limiting factor for farmers and pastoralists in West Africa is the low precipitation use efficiency caused by poor soil quality. Challenges like water losses from runoff and evaporation, among others, can be combated through water conservation and harvesting techniques including shrub integration and reduced tillage.

Sustainable intensification with a transdisciplinary, participatory approach

The aims of the project are to boost the resilience and sustainable intensification potential of agricultural production systems in the Sahel. Furthermore, fruitful cooperation, both regionally and between African and European institutions, is to be promoted. SustainSahel uses transdisciplinary, participatory approaches to realise integrated systems for crops, shrubs, livestock and people. The project is working in close partnership with farmer organisations, advisory services and farming communities to identify the most promising practices for sustainable intensification.

A cascading knowledge-sharing approach

The project works in seven focus areas in Senegal, Burkina Faso, and Mali. The local actors involved with milk, meat, cereals, cotton, and other regional value chains are closely involved via ‘Innovation Platforms’ where challenges are identified and solutions discussed while building the capacities of farmers and strengthening farmer organisations.

SustainSahel’s participatory approach gives farmers a voice and involves them in the implementation and evaluation of field and on-farm trials. The close exchange between stakeholders is expected to increase the chances of adopting and promoting novel approaches shared later in the project.

Lauren Dietemann, Harun Cicek and Fernando Sousa, FiBL Switzerland

About SustainSahel

SustainSahel – Synergistic use and protection of natural resources for rural livelihoods through systematic integration of crops, shrubs and livestock in the Sahel

Website: fibl.org > themes/projects > project database > SustainSahel

Contact: harun.cicek@fibl.org

Funding: EU Horizon 2020

Project partners: fibl.org > themes/projects > project database > SustainSahel

Link: youtube.com > SustainSahel project video
FiBL has proven resilient in challenging times: Both the number of employees and revenue increased in the last two years despite the Covid-19 pandemic.
FiBL Switzerland

Interdisciplinarity and the recursive transfer of knowledge between research, extension and practice are the strengths of FiBL Switzerland. Its competencies are also in demand in numerous international projects. In addition to offices and laboratories, FiBL Switzerland’s site at Frick includes a farm holding, an orchard, a vineyard with its own wine press and a restaurant, all of which are run organically. In 2016 the Suisse Romande department, based in Lausanne, was established to strengthen FiBL’s presence in French-speaking Switzerland.

FiBL Europe

FiBL Europe is the common institution of the FiBL group providing services and support to its researchers. Based in Brussels it represents the national FiBL institutes at European level, being the “transmission chain” of the FiBL Research toward European stakeholders, and acting as a single access point for the competencies of the national FiBL institutes. FiBL Europe also offers project coordination, advocacy, consultancy, and training services.

Team and finances

<table>
<thead>
<tr>
<th>Team 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>265 employees</td>
</tr>
<tr>
<td>94 students, PhD students, interns, guest scientists, guest assistants and conscientious objectors doing alternative service</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Team 2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 employees</td>
</tr>
<tr>
<td>2 interns</td>
</tr>
</tbody>
</table>

Profit and loss account

<table>
<thead>
<tr>
<th>2020 in CHF</th>
<th>2021 in CHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td></td>
</tr>
<tr>
<td>Research</td>
<td>12 987 758</td>
</tr>
<tr>
<td>Federal contribution</td>
<td>9 850 700</td>
</tr>
<tr>
<td>Extension, training</td>
<td>10 066 93</td>
</tr>
<tr>
<td>and communication</td>
<td></td>
</tr>
<tr>
<td>International cooperation</td>
<td>4 862 24</td>
</tr>
<tr>
<td>Research farms</td>
<td>211 287</td>
</tr>
<tr>
<td>Restaurant, internal services</td>
<td>358 647</td>
</tr>
<tr>
<td>Donations, misc. income</td>
<td>646 162</td>
</tr>
<tr>
<td>Total income</td>
<td>29 921 311</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expenditure on personnel</td>
</tr>
<tr>
<td>Material expenditure</td>
</tr>
<tr>
<td>– Materials for trials, laboratory consumables, analytics, project costs</td>
</tr>
<tr>
<td>– Cost of office, office supplies, workshop space, other exp. for administration, IT, advertising</td>
</tr>
<tr>
<td>Financial expenses</td>
</tr>
<tr>
<td>Depreciation</td>
</tr>
<tr>
<td>Total expenses</td>
</tr>
<tr>
<td>Extraordinary revenue</td>
</tr>
<tr>
<td>Surplus for the year</td>
</tr>
</tbody>
</table>

Profit and loss account

<table>
<thead>
<tr>
<th>2020 in EUR</th>
<th>2021 in EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td></td>
</tr>
<tr>
<td>Internal revenue</td>
<td>451 000</td>
</tr>
<tr>
<td>External project income</td>
<td>81 209</td>
</tr>
<tr>
<td>Total income</td>
<td>532 209</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expenditure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expenditure on personnel</td>
</tr>
<tr>
<td>Misc. expenditure</td>
</tr>
<tr>
<td>Project related costs</td>
</tr>
<tr>
<td>Total expenditure</td>
</tr>
<tr>
<td>Operating result</td>
</tr>
</tbody>
</table>
FiBL Germany

FiBL Germany offers scientific and practice-oriented expertise on current issues in organic agriculture and food production at its sites in Frankfurt am Main and Witzenhausen. Current work priorities include the inputs list, animal welfare, the FiBL Academy, the “Öko-Feldtage” (organic field days), rural areas and value chains.

Profit and loss account

<table>
<thead>
<tr>
<th></th>
<th>Gemeinnütziger Verein</th>
<th>Gemeinnütziger Stiftung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>E.V. 2020</td>
<td>E.V. 2021</td>
</tr>
<tr>
<td>Research & Development</td>
<td>1,756,052 EUR</td>
<td>1,708,174 EUR</td>
</tr>
<tr>
<td>Other</td>
<td>64,223 EUR</td>
<td>135,241 EUR</td>
</tr>
<tr>
<td>Total income</td>
<td>1,820,275 EUR</td>
<td>1,843,415 EUR</td>
</tr>
<tr>
<td>Expenditure</td>
<td>E.V. 2020</td>
<td>E.V. 2021</td>
</tr>
<tr>
<td>Expenditure on personnel</td>
<td>875,652 EUR</td>
<td>916,067 EUR</td>
</tr>
<tr>
<td>Project material cost</td>
<td>139,392 EUR</td>
<td>143,241 EUR</td>
</tr>
<tr>
<td>Depreciation</td>
<td>31,091 EUR</td>
<td>65,555 EUR</td>
</tr>
<tr>
<td>Total expenditure</td>
<td>947,955 EUR</td>
<td>1,586,673 EUR</td>
</tr>
<tr>
<td>Operating result</td>
<td>37,409 EUR</td>
<td>35,943 EUR</td>
</tr>
</tbody>
</table>

Team 2022

65 employees

5 students, PhD students and interns

FiBL Austria

To establish connectivity between practice, research and extension and to provide consumers with sound organic knowledge are among FiBL Austria’s key objectives and fields of work. With practice-oriented research and market development projects, FiBL Austria plays an active role in comprehensive knowledge exchange and in networking between all actors involved along the organic food production chain – from producers right through to consumers.

Profit and loss account

<table>
<thead>
<tr>
<th></th>
<th>2020 in EUR</th>
<th>2021 in EUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Research & Innovation</td>
<td>430,000 EUR</td>
<td>520,000 EUR</td>
</tr>
<tr>
<td>Training & Education</td>
<td>340,000 EUR</td>
<td>360,000 EUR</td>
</tr>
<tr>
<td>Other</td>
<td>220,000 EUR</td>
<td>220,000 EUR</td>
</tr>
<tr>
<td>Total income</td>
<td>990,000 EUR</td>
<td>1,100,000 EUR</td>
</tr>
<tr>
<td>Expenditure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expenditure on personnel</td>
<td>735,000 EUR</td>
<td>812,000 EUR</td>
</tr>
<tr>
<td>Project material cost</td>
<td>33,000 EUR</td>
<td>43,000 EUR</td>
</tr>
<tr>
<td>Office expenditure</td>
<td>50,000 EUR</td>
<td>63,000 EUR</td>
</tr>
<tr>
<td>Total expenditure</td>
<td>888,000 EUR</td>
<td>1,088,000 EUR</td>
</tr>
<tr>
<td>Surplus</td>
<td>2000 EUR</td>
<td>6000 EUR</td>
</tr>
</tbody>
</table>
FiBL France

FiBL France is headquartered in the south-east of the country where it conducts laboratory and field trials in collaboration with a network of farmers and other partners. Research topics emerge in response to evolving needs and currently revolve around agroforestry, small ruminant and pig health, and soil and plant health.

Team 2022
7 employees
2 students

ÖMKi

The Hungarian Research Institute of Organic Agriculture ÖMKi works on research-innovation tasks leading to practically implementable results, thus guaranteeing the sustainable development of agriculture and food production in Hungary. To this end the organisation develops professional networks in cooperation with farmers, Hungarian and international research institutes covering the fields of horticulture, arable cropping, viticulture, animal husbandry and precision farming technologies. In 2020 ÖMKi was admitted to the European Network of Living Laboratories (ENoLL).

Team 2022
22 employees
5 students and interns

Profit and loss account

2020 2021
Income
Research 225,302 287,898.89
Services, training 21,557.00 23,986.18
Extraordinary revenue 15,488.24 16,892.59
Total income 262,347.37 330,777.66
Expenditure
Expenditure on personnel 31,920.73 41,063.43
Project costs 170,979.86 203,696.53
Operational costs 44,250.68 60,937.04
Depreciation 15,667.47 15,922.85
Total expenditure 262,818.74 321,619.85
Operating result –471,37 9157.81

Profit and loss account

2021
Income
Research 611,253
Others 664,482
Total income 1,275,735
Expenditure
Expenditure on personnel 545,369
Material costs 305,091
Other costs 64,735
Total expenditure 915,195
Operating result 360,540
Acknowledgements

A big thank you to our supporters

We would like to express our sincere gratitude to all those who support FiBL with their donations. In doing so, you are helping us to advance organic agriculture, ensuring that future generations can also count on fertile soils, clean water and residue-free food.

FiBL Austria thanks:
Agrarmarkt Austria Marketing GmbH, Wien
Amt der Burgenländischen Landesregierung, Eisenstadt
Amt der Oberösterreichischen Landesregierung, Linz
Baleaformer Grafenau GmbH, Linz
Bioad ADAMAH, Glinzendorf
Bundesministerium für Bildung, Wissenschaft und Forschung, Wien
Bundesministerium für Landwirtschaft, Regionen und Tourismus, Wien
Donau Seja, Wien
European Union, Brussels
FiBL Deutschland e.V., Frankfurt
FiBL Schweiz, Frick
Fleischwaren Berger, Steinhofkirchen
Greenpeace Central- und Osteuropa, Wien
Insafo GmbH, Wien
Institut für Agrarökologie, Aarau
Ja! Natürlich Naturprodukte Ges.m.b.H., Wiener Neudorf
Klima- und Energiefonds, Wien
Königliche Technische Hochschule, Stockholm
Ländliches Fortbildungsinstitut Österreich, Wien
PUR ORGANIC PRODUCTS GmbH, Windhohen/Thyra
Raumberg-Organisationsforschung & Entwicklung, Inning
Safranov Agrar GmbH, Linz
Stift Schöpf, Schöpf!
Stiftung Lebenswertes Lichtenstein, Vaduz
Steigl Gastro-F&B Service GmbH & Co. KG, Salzburg
Unterwurzach für die Welt, e.V.
Universität für Bodenkultur, Wien
VIER PFOTEN – Stiftung für Tierschutz, Wien
WIFI – Wirtschaftsförderungsinstitut der Wirtschaftskammer Wien, Wien
Werner Lampert Beratungsges.m.b.H., Wien
ÖMKi thanks:
Pancras Foundation
Hungarian National Rural Network (MNVH)

FiBL France thanks:
Le Ministère français de l’Agriculture et de l’Alimentation (CASDAR)
L’Office Français de la Biodiversité (OFB)
Le Programme Leader Europe Territoires d’Innovation-Biovallée (Caravan des défrichés)
La région Auvergne Rhône-Alpes
La Communauté de Communes du Val de Dordogne
La Fondation Drekling
La Fondation de France
L’association Terre & Humanisme
La Fondation Alpes Controle

A big thank you to our supporters

We would like to express our sincere gratitude to all those who support FiBL with their donations. In doing so, you are helping us to advance organic agriculture, ensuring that future generations can also count on fertile soils, clean water and residue-free food.

FiBL Austria thanks:
Agrarmarkt Austria Marketing GmbH, Wien
Amt der Burgenländischen Landesregierung, Eisenstadt
Amt der Oberösterreichischen Landesregierung, Linz
Baleaformer Grafenau GmbH, Linz
Bioad ADAMAH, Glinzendorf
Bundesministerium für Bildung, Wissenschaft und Forschung, Wien
Bundesministerium für Landwirtschaft, Regionen und Tourismus, Wien
Donau Seja, Wien
European Union, Brussels
FiBL Deutschland e.V., Frankfurt
FiBL Schweiz, Frick
Fleischwaren Berger, Steinhofkirchen
Greenpeace Central- and Osteuropa, Wien
Insafo GmbH, Wien
Institut für Agrarökologie, Aarau
Ja! Natürlich Naturprodukte Ges.m.b.H., Wiener Neudorf
Klima- und Energiefonds, Wien
Königliche Technische Hochschule, Stockholm
Ländliches Fortbildungsinstitut Österreich, Wien
PUR ORGANIC PRODUCTS GmbH, Windhohen/Thyra
Raumberg-Organisationsforschung & Entwicklung, Inning
Safranov Agrar GmbH, Linz
Stift Schöpf, Schöpf!
Stiftung Lebenswertes Lichtenstein, Vaduz
Steigl Gastro-F&B Service GmbH & Co. KG, Salzburg
Unterwurzach für die Welt, e.V.
Universität für Bodenkultur, Wien
VIER PFOTEN – Stiftung für Tierschutz, Wien
WIFI – Wirtschaftsförderungsinstitut der Wirtschaftskammer Wien, Wien
Werner Lampert Beratungsges.m.b.H., Wien
ÖMKi thanks:
Pancras Foundation
Hungarian National Rural Network (MNVH)

FiBL France thanks:
Le Ministère français de l’Agriculture et de l’Alimentation (CASDAR)
L’Office Français de la Biodiversité (OFB)
Le Programme Leader Europe Territoires d’Innovation-Biovallée (Caravan des défrichés)
La région Auvergne Rhône-Alpes
La Communauté de Communes du Val de Dordogne
La Fondation Drekling
La Fondation de France
L’association Terre & Humanisme
La Fondation Alpes Controle

By making a donation, you can help FiBL to continue investing in research and extension in the field of organic agriculture, and to create solutions for agriculture as a whole.

Accounts for donations

FiBL Switzerland
FiBL Switzerland’s account for donations:
Account number: 0450.0139.2066
Aargauische Kantonalbank
IBAN: CH94 0076 1045 0013 9206 6
SWIFT/BIC: KBAGCH22
Contact for German-speaking Switzerland:
Knut Schmidtke, Directorate FiBL Switzerland
Tel. +41 62 865 04 10, knut.schmidtke@fibl.org
Contact Suisse Romande: Raphaël Charles
Head of Department Suisse Romande
Tel. +41 21 619 44 77, raphael.charles@fibl.org

FiBL Germany
FiBL Germany’s account for donations:
FiBL Germany e.V.
Account number: 0200334620, BLZ: 5050201
Frankfurter Sparkasse
IBAN: DE49 5005 0201 0200 3346 20
SWIFT/BIC: HELAGCH2
Contact: Robert Hermanowski
Managing Director FiBL Germany
Tel. +49 69 713 769 9730, robert.hermanowski@fibl.org

FiBL France
FiBL France’s account for donations:
Account number: 85045126671, RIB: 13906
Crédit Agricole Sud Rhône Alpes
IBAN: FR76 1390 6001 2585 0451 2667 191
SWIFT/BIC: AGRIFRPP839
Contact: Florence Arsonneau
Director FiBL France
Tel. +33 4 75 25 41 55, florence.arsonneau@fibl.org

FiBL Austria
FiBL Austria’s account for donations:
Bank sort code: 32195
Raiffeisenlandesbank Region Wiener Alpen eGen.
IBAN: AT79 3219 5000 0007 6935
SWIFT/BIC: RLNWATWWA6
Contact: Andreas Kranzler
Managing Director FiBL Austria
Tel. +43 1 907 6313, andreas.kranzler@fibl.org

FiBL France
FiBL France’s account for donations:
Account number: 85045126671, RIB: 13906
Crédit Agricole Sud Rhône Alpes
IBAN: FR76 1390 6001 2585 0451 2667 191
SWIFT/BIC: AGRIFRPP839
Contact: Florence Arsonneau
Director FiBL France
Tel. +33 4 75 25 41 55, florence.arsonneau@fibl.org

ÖMKi
ÖMKi’s account for donations:
Konto: 10300002-10544639-48820015
MKB Bank Nyrt
IBAN: HU67 1030 0002 1054 4639 4882 0015
SWIFT/BIC: MKKB HU HB B
Contact: Dóra Drexler
Director ÖMKi
Tel. +36 20 346 9120, dora.drexler@biokutatas.hu

Donate online
Donate.fibl.org