Long term farming systems affect soils potential for N₂O production and reduction processes under denitrifying conditions

Hans-Martin Krause a,*, Cécile Thonar a, Wolfram Eschenbach b, Reinhard Well b, Paul Mäder a, Sebastian Behrens c, Andreas Kappler d, Andreas Gattinger a

a Department of Soil Sciences, Research Institute of Organic Agriculture (FiBL), 5070 Frick, Switzerland
b Thünen Institute of Climate-Smart Agriculture, Federal Research Institute for Rural Areas, Forestry and Fisheries, 38116 Braunschweig, Germany
c College of Civil, Environmental, and Geo Engineering, University of Minnesota, Minneapolis, MN 55455, USA
d Geomicrobiology, Center for Applied Geoscience, University of Tübingen, 72076 Tübingen, Germany

ABSTRACT

N₂O is a potent greenhouse gas with an atmospheric lifetime of 114 years which also contributes to ozone layer destruction. Mitigating N₂O emissions is especially challenging to the agricultural sector that is responsible for the majority of anthropogenic N₂O release. In order to develop effective mitigation strategies, a detailed understanding of drivers for N₂O production and reduction in agriculturally managed soils is needed. Denitrification is recognized as one of the most important source processes for N₂O emissions from soils. However, the last step in denitrification, the reduction of N₂Ot oN₂ is the only known sink for N₂O in soil. Although the impact of single parameters on denitrification is quite well documented, there is still a knowledge gap when it comes to the impact of complex farming systems on N₂O production and reduction. In this experiment, we incubated soil samples from the DOK long term field trial in Therwil/Switzerland comparing organic (BIOORG) and conventional (CONMIN) farming systems with a non-fertilized control (NOFERT). Soil samples were incubated under 90% WFPS after fertilization with NH₄¹⁵NO₃ equivalent to a moderate fertilization event in the field with 40 kg N ha⁻¹. In order to assess soil’s potential for N₂O production and reduction, we combined direct measurements of denitrification end products N₂O and N₂ with molecular analysis of functional denitrifying communities involved in NO₂⁻ and N₂O reduction on DNA and mRNA levels. In order to monitor N cycling processes under the chosen conditions, stable isotope tracing was employed to quantify nitrification and NO₃ consumption rates. Results revealed increased NO₃ consumption and greatest potential for N₂O emissions in BIOORG as a result of increased soil organic carbon contents. Production of N₂ was similar in BIOORG and CONMIN and significantly lower in NOFERT, most likely due to significantly decreased pH inhibiting N₂O reduction. This caused the greatest N₂O/(N₂ + N₂O) ratios in NOFERT (0.88 ± 0.02) followed by BIOORG (0.79 ± 0.01) and CONMIN (0.68 ± 0.02) (p < 0.001). Lowest N₂O/(N₂ + N₂O) ratios in CONMIN were reflected by lowest N₂O emissions and coincided with elevated nosZ transcript copies in the beginning of incubation. Although highest N₂O emissions in BIOORG were detected, the incubation setup cannot directly be translated to field conditions. Nevertheless, our results emphasize that farming system induced changes on soil geochemical parameters like soil pH and soil organic carbon affect microbial N₂O production and reduction processes during denitrification.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Nitrous oxide (N₂O) is a major greenhouse gas, contributing to radiative forcing of Earth’s climate. It is also the most important anthropogenic compound involved in the catalytic breakdown of stratospheric ozone (Kanter et al., 2013). Its current atmospheric concentration is 328 ppb and mostly due to anthropogenic interventions in the nitrogen cycle, it rises linearly by 0.25% year⁻¹ (Forster et al., 2007; IPCC, 2013). The global warming potential of N₂O exceeds that of CO₂ 298-fold and because of its long atmospheric lifetime of 114 years, reducing atmospheric N₂O
Different N species can serve as substrates for N₂O formation from a variety of N transforming processes depending on soil aeration status. Under oxic conditions, NH₄ serves as a substrate for nitrification. In this process N₂O can be formed as a byproduct via NH₂OH oxidation (Schreiber et al., 2012). Under oxygen limiting conditions NO₃ reduction leads to N₂O formation via denitrification. The separation of nitrification and denitrification as sources for N₂O is a simplification as a variety of microbial metabolic pathways (e.g. nitrifier-denitrification, co-denitrification) and abiotic reactions (chemodenitrification, chemical decomposition of NH₂OH) can form N₂O and might occur within the same soil aggregate (Kool et al., 2011; Butterbach-Bahl et al., 2013). Denitrification is generally considered a major source of N₂O production and the last step in denitrification; the reduction of N₂O to N₂ is the only known biological sink for N₂O (Thomson et al., 2012; Butterbach-Bahl et al., 2013).

Most N transformations are carried out biologically and a detailed understanding of the drivers regulating denitrification and N₂O production from the soil microbial communities is a prerequisite to develop effective mitigation strategies. Denitrification is a modular pathway which involves four enzymatic systems in the subsequent reduction of NO₃, NO₂, NO and N₂O (Tiedje et al., 1982). The most widely used genetic marker system targeting denitrification are the functional genes nirK and nirS encoding for copper- and heme-bearing NO₂ reductases (Jones et al., 2008). The last step of denitrification, the reduction of N₂O to N₂, is catalyzed by the nitrous oxide reductases encoded by the functional genes nosZ and nosZ-II (Jones et al., 2013). Not all microbes involved in denitrification necessarily possess the whole set of denitrifying genes (Graf et al., 2014). Around one third of bacteria involved in N₂O reduction lack the genetic capability for N₂O reduction and thus are likely to produce N₂O as a denitrification end product (Philippot et al., 2011). On the contrary, other microbes bearing the functional genes nosZ and especially nosZ-II lack antecedent enzymatic system and thus might act as a sink for N₂O (Graf et al., 2014). Recently there have been several studies investigating mechanisms of N₂O emissions via gene abundance and/or expression with variable results (Miller et al., 2008; Henderson et al., 2010; Morales et al., 2010; Dandie et al., 2011; Harter et al., 2014; Németh et al., 2014; Chen et al., 2015). Yet, most studies lacked quantification of N₂ and the process of N₂O consumption was not directly assessed.

Due to its high atmospheric background concentrations, quantification of N₂ as a denitrification end product is extremely challenging (Groffman et al., 2006) and all approaches to measure N₂ have to deal with inherent drawbacks (Saggar et al., 2013). Recent development of simultaneous tracing of ¹⁵N in N₂O and N₂ from the same gas sample has significantly increased the efficiency and reliability of ¹⁵N tracing experiments (Lewicka-Szczepak et al., 2013). This method is especially valuable in the agricultural context, since provision of additional N is an intrinsic part of fertilization research. However, ensuring homogenous distribution of added ¹⁵N remains challenging in ¹⁵N tracing experiments (Spott et al., 2006). Quantification of N₂ provides valuable information about N₂O consumption and N₂/N(N₂O + N₂) product ratios are an important measure for soils performance as sink for N₂O. The N₂O/(N₂O + N₂) product ratio can be affected by C and N availability (Senbayram et al., 2012) as well as soil pH (Cuhel et al., 2010) and the denitrifying community composition (Philippot et al., 2009; Jones et al., 2014). While the impact of single parameters on denitrification processes is quite well studied, there is still a knowledge gap when it comes to complex farming systems.

In the last decades, organic farming systems gained attention due to positive effects on numerous soil quality indicators (Maeder et al., 2002), soil organic carbon stocks (Gättinger et al., 2012) and N₂O and CH₄ fluxes (Skinner et al., 2014). It was also shown that organic farming systems increased richness and diversity of the microbial community (Hartmann et al., 2014). However, it is unclear how the legacy of farming systems affects soil denitrification and especially N₂O reduction. In order to assess the impact of farming system on denitrification and N₂O/(N₂O + N₂) product ratio, we performed an incubation trial with soil samples originating from the DOK long term field trial (D: bio-dynamic, O: bio-organic, K: german “konventionell” integrated). This field trial compares farming systems in place since 1978.

The object of this study was to assess the effect of farming system induced changes in soil geochemical parameters on N cycling under oxygen limited conditions with a special emphasis on N₂O and N₂ emissions. We also aimed to identify the functional impact of denitrifier gene abundance and expression on N₂O production and reduction processes.

2. Material and methods

2.1. Sampling site

Soils were collected from the DOK system comparison trial in Therwil/BL, Switzerland. Soil sampling took place in autumn 2013 and soil was classified as Haplic Luvisol on deposits of alluvial loess. Composite soil samples originated from 4 replicate parcels of BIOORG, CONMIN and NOFERT treatments, and were collected to a depth of 20 cm. Samples were sieved to 2 mm and stored at 4 °C. Soil sampling was carried out during the 6th crop rotation after cultivation of Zea mays L. The previous cropping consisted of two years cultivation of a grass clover ley. All farming systems are subjected to the same 7 year crop rotation. Details on the experimental setup of the field trial are described in Fließbach et al. (2007). Briefly, BIOORG represents a livestock-based organic farming system with farmyard manure fertilization without pesticides and did not receive liming treatment. CONMIN is characterized by a livestock-free system comprising mineral fertilization and chemical pest control. This treatment received 4.7 t ha CaCO₃ in the 4th crop rotation from 1999 to 2005 (Oberholzer et al., 2009). NOFERT did not receive any fertilization, pest control or liming treatment. The 5th crop rotation started in 2006 with maize, followed by winterwheat, soja, potato, winterwheat and two years of grass clover. Soil samples were taken after harvest of the first crop in the 6th crop rotation which was maize. In the vegetation period before sampling CONMIN received 170 kg N ha⁻¹ in the form of calcium ammonium nitrate, while BIOORG received 136 kg N ha⁻¹ as rotted manure and 46 kg N ha⁻¹ in the form of cattle slurry.

2.2. Incubation setup

For each microcosm, the equivalent of 150 g dry soil was placed in 250 ml DURAN wide neck glass bottles (Schott AG, Mainz, Germany) and compacted to a bulk density of 1.20 ± 0.02 g cm⁻³ by tapping the glass bottles on a soft surface. After pre-incubation for 7 days at a water filled pore space (WFPS) of 50%, an N containing solution equivalent to a moderate fertilization event (40 kg N ha⁻¹ or 11 mg N per microcosm) was added in the form of 60 at%
enriched NH₄NO₃. Deionized and autoclaved water was added to adjust to 90% WFPS in order to stimulate denitrifying conditions and enhance distribution of added N solution. Swelling properties of the soil samples resulted in a WFPS of 87.5 ± 1.5% with no farming system specific bias. To assure constant conditions, water content was checked gravimetrically and corrected every second day by adding evaporated water to each microcosm. Microcosms were incubated with open bottles in order to mimick conditions after a heavy rain event in the field. Each treatment was incubated in triplicate at 20 ± 1.2 °C in the dark. In total, 63 microcosms (three treatments × three reps × seven sampling dates) were prepared to enable destructive sampling for geochemical and molecular biological analysis after 0, 2, 5, 8, 11, 14 and 17 days. After destructive sampling, soil was homogenized and divided into subsamples for subsequent analysis.

2.3. Geochemical analyses

2.3.1. pH, soil organic carbon and total N

At the beginning of the incubation, key soil parameters were assessed in triplicate. Soil pH was determined in a 1:2.5 (w/v) suspension with demineralized H₂O. Soil organic carbon (SOC) was analyzed by dry combustion (multi N/C2100S – HT1300, Analytik Jena AG, Jena, Germany) and total N in soils was determined by combustion (CN Vario Max, Elementar Analysensysteme GmbH, Hanau, Germany).

2.3.2. Mineral nitrogen (Nmin) and dissolved organic carbon (DOC)

For determination of mineral N (NH₄ and NO₃) and DOC, 80 ml of 0.01 M CaCl₂ was added to 20 g soil sample and shaken for 1 h at 130 rpm (SM-30, Edmund Bühler GmbH, Hechingen, Germany). The soil solution was filtered through a folded filter (MN619EH, Machery-Nagel, Düren, Germany) and stored at 20 °C until analysis. Concentrations of NH₄ and NO₃ were quantified by continuous flow analyses (San Plus, Skalar Analytical B.V., Breda, Netherlands) while DOC was determined via TOC Analyzer (multi N/C2100S, analyticon, Jena, Germany). All parameters were quantified at each time point but changes in DOC over time were negligible. Therefore only initial DOC contents are reported.

2.3.3. Greenhouse gas (GHG) fluxes

Before destructive soil sampling, production of CO₂ and N₂O were measured after closing each microcosm with a gas-tight lid equipped with a rubber septum for up to 40 min. A cooling tray were measured after closing each microcosm with a gas-tight lid of 0.01 M CaCl₂ was added to 20 g soil sample and shaken for 1 h at 2.3.1. pH, soil organic carbon and total N

2.3.1. pH, soil organic carbon and total N

At the beginning of the incubation, key soil parameters were assessed in triplicate. Soil pH was determined in a 1:2.5 (w/v) suspension with demineralized H₂O. Soil organic carbon (SOC) was analyzed by dry combustion (multi N/C2100S – HT1300, Analytik Jena AG, Jena, Germany) and total N in soils was determined by combustion (CN Vario Max, Elementar Analysensysteme GmbH, Hanau, Germany).

2.3.2. Mineral nitrogen (Nmin) and dissolved organic carbon (DOC)

For determination of mineral N (NH₄ and NO₃) and DOC, 80 ml of 0.01 M CaCl₂ was added to 20 g soil sample and shaken for 1 h at 130 rpm (SM-30, Edmund Bühler GmbH, Hechingen, Germany). The soil solution was filtered through a folded filter (MN619EH, Machery-Nagel, Düren, Germany) and stored at 20 °C until analysis. Concentrations of NH₄ and NO₃ were quantified by continuous flow analyses (San Plus, Skalar Analytical B.V., Breda, Netherlands) while DOC was determined via TOC Analyzer (multi N/C2100S, analyticon, Jena, Germany). All parameters were quantified at each time point but changes in DOC over time were negligible. Therefore only initial DOC contents are reported.

2.3.3. Greenhouse gas (GHG) fluxes

Before destructive soil sampling, production of CO₂ and N₂O were measured after closing each microcosm with a gas-tight lid equipped with a rubber septum for up to 40 min. A cooling tray with circulatory water flow assured constant temperature (20 ± 0.8 °C) of the microcosms during gas sampling. Gas samples of 5 ml were taken from the headspace of the microcosms and directly injected into a gas chromatograph (7890A, Agilent Technologies, Santa Clara, CA) after 0, 20 and 40 min by using an autosampler (MPS 2XL, Gerstel, Baltimore, MD). In order to avoid underpressure, 5 ml He was injected into the headspace of the microcosm prior to gas sampling. CO₂ and N₂O concentrations in gas samples were determined via flame ionization detector (FID) linked to a methanizer and electron capture detector (ECD), respectively. Calibration curves for N₂O (r² > 0.99) and CO₂ (r² > 0.99) were obtained by a threefold analysis of 3 standard gases with 0.308, 2.94 and 90 ppm N₂O and 300, 2960 and 9000 ppm CO₂ before and after each sampling. For flux calculation, a linear enrichment of gases in the headspace was assumed. Gas samples for ¹⁵N and ¹⁵N analysis were taken with a syringe directly after destructive sampling after a prolonged enrichment period of 1 h and stored in 12.5 ml gas tight vials. ¹⁵N₂ and ¹⁵N₂O concentrations in the gas samples were quantified via isotope ratio mass spectrometry, as described in Lewicka-Szczebak et al. (2013). Prior to analysis, in a part of the sample N₂O is frozen in a liquid N trap which enables the quantification of ²⁹R (²⁹N₂/²⁸N₂) and ³⁰R (³⁰N₂/²⁸N₂) of N₂, N₂O and N₂O + N₂ from the same sample (Lewicka-Szczebak et al., 2013). The fraction of NO₃ derived N₂O and/or N₂ (fp) were calculated according to Spott et al. (2006) using eq. (1):

\[
f_p = \frac{a_m - a_{bgd}}{a_p - a_{bgd}}
\]

where \(a_{bgd}\) is the ¹⁵N abundance of the atmospheric background, \(a_p\) is the ¹⁵N abundance of the active NO₃ pool and \(a_m\) is the ¹⁵N abundance of N₂ and/or N₂O. \(a_m\) and \(a_p\) were calculated using eqs. (2) and (3):

\[
a_m = \frac{29R + 2 \times 30R}{2 (1 + 29R + 30R)}
\]

\[
a_p = \frac{30N_{o}}{a_{bgd} \times a_m - a_{bgd}}
\]

In which N₀ is the measured fraction of m/z 30 in N₂ and/or converted N₂O calculated as ³⁰R(1+²⁹R+³⁰R). ¹⁵N enrichment of the active NO₃ pools for N₂O and N₂ formation are shown in Fig. S1. The denitrification product ratio (pr) was calculated according to eq. (4):

\[
pr = \frac{f_{N_2O}}{f_{N_2O} + f_{N_2}}
\]

NO₃ derived N₂O and N₂ fluxes were assessed according to eqs. (5) and (6):

\[
N_2O_{NO3flux} = f_{N2O}^{*}N_2O_{totalflux}
\]

\[
N_{2NO3flux} = \left(1 - \frac{1}{pr}\right)N_2O_{NO3flux} - N_2O_{NO3flux}
\]

In which N₂O_{totalflux} was obtained by flux calculation from GC measurements. Hybrid N₂O and N₂ was determined as described in Spott and Stange (2011), but found to be irrelevant.

2.3.4. Isotopic analysis of ¹⁵NH₄ and ¹⁵NO₃ and calculation of N transforming processes

The ¹⁵N abundance in NH₄ and NO₃ was determined according to the procedure described in Stange et al. (2007), whereby NO₃- was reduced to NO by vanadium chloride (VCl₃) and NH₄ was oxidized to N₂ by sodium hypobromite (BrNaO). The NO and N₂ obtained were then analyzed using a quadrupole mass spectrometer (GAM 200, InProcess Instruments, Bremen, Germany). The analytical precision was determined by repeated measurements of standards (1 at%, 5 at%, 50 at%, 75 at%) and was consistently around 1.2%. Gross nitritation and NO₃ consumption rates were assessed using the pool dilution approach according to eq. (7) and eq. (8) provided by Davidson et al. (1991) and Stark (2000).

\[
p = \frac{((M_0 - M_1) / t) \times \log(H_i M_i / H_i M_0)}{\log(M_0 / M_1)}
\]

\[
c = p - \frac{((M_0 - M_1) / t)}{t}
\]

where \(p\) and \(c\) are the nitritation and NO₃ consumption rates (mg N kg⁻¹ day⁻¹), \(M\) is the amount of NO₃-N (mg N kg⁻¹ dry soil), \(H\) the ¹⁵N atom fraction of NO₃, \(subscripts\) 0 and 1 mark first and second time point, respectively and \(t\) represents the incubation interval between first and second time point (days). For all
calculations a homogeneous distribution of the labeled pool and negligible immobilization of the 15N tracer into the organic N pool within incubation intervals were assumed. Cumulative values had been quantified by summing the amount of N transformed during all incubation intervals.

2.4. Molecular biological analyses

Subsamples for DNA and RNA extraction were collected and stored at −80 °C. DNA and RNA were co-extracted from 0.5 g soil samples via phenol chloroform extraction as described in Griffiths et al. (2010). In order to assess for individual DNA and RNA recovery rates, 2.5010 copies of a linearized plasmid (pJET1.2, CloneJET PCR Cloning Kit, Thermo Scientific, Waltham, MA) carrying a fragment of cassava mosaic virus (APAV9, gene accession Nr. AJ427910) (Thonar et al., 2012) and 2.8510 transcripts (MEGAscript® T7 transcription Kit, Invitrogen, Carlsbad, CA) were added to the soil samples before bead beating. DNA and RNA concentrations were assessed fluorimetrically with Qubit 2.0 (Qubit dsDNA HS Assay Kit and Qubit RNA HS Assay Kit, Invitrogen, Carlsbad, CA) directly after extraction. Absolute yield for DNA and RNA ranged from 108.4 to 325.2 ng g dry soil−1 and 22.4–78.8 ng g dry soil−1, respectively, with RNA showing a treatment-specific bias. Reverse transcription was conducted using Quantitect Reverse Transcription Kit (Qiagen, Venlo, Netherlands) with an integrated removal step for genomic DNA. Successful removal of genomic DNA was assured by the performance of negative controls without addition of reverse transcriptase. Quantitative PCR of functional genes was performed using KAPA SYBR FAST qPCR Master Mix (Kapa Biosystems, Wilmington, MA) and a Rotor-Gene-Q (QIAGEN, Venlo, Netherlands). Each 10 µl reaction volume included 1 ng of template DNA or cDNA. Primers and thermal protocols used for functional gene quantification are listed in Tables S1 and S2. Standard curves were constructed by running a serial dilution with concentrations ranging from 108 to 101 gene copy numbers per reaction of a plasmid bearing a copy of the respective gene. Specifications of vector plasmids and host genes are given in Table S3. Concentrations of standards were measured fluorimetrically with Qubit 2.0 (Qubit dsDNA HS Assay Kit, Invitrogen, Carlsbad, CA). Efficiencies of qPCR yielded 94–96% for APAV9 gene fragment, 86–92% for nirK, 89–92% for nirS, 77–82% for nosZ and 82–86% for nosZ-II assays and specificity of the amplification was tested via melt curve and agarose gel analysis. Each treatment was assessed with three biological replications and each reaction was performed in analytical duplicates. Analysis was repeated if Ct values differed by more than 0.5. Raw data was analyzed via LinReg PCR by assessing enzyme kinetics for each reaction individually (Ramakers et al., 2003). Additional to normalization of functional gene abundances per g dry soil, DNA and cDNA recovery rates obtained by APAV9 quantification were used to correct functional gene and transcript copy numbers. Recovery rates averaged 51.4 ± 12.5% for DNA and 2.3 ± 0.8% for RNA. The absolute values of gene and especially transcript numbers exceeded reported values from other studies, as a consequence of calculation integrating the recovery rate of the internal standard (Tatti et al., 2013; Chen et al., 2015; Snider et al., 2015).

2.5. Statistics

For all parameters measured the effect of farming systems at a specific time point were examined by one way analysis of variance (ANOVA) with a post hoc Tukey test. Differences were considered as significant at P < 0.05. In the same way, time integrated N transformation rates, and cumulated N2O and N2 production as well as N2O/(N2O + N2) product ratios were tested for effects of treatments. For each parameter the effect of incubation time was assessed by performing a repeated measures ANOVA followed by a post hoc Tukey test. The interaction of treatment and time was assessed by a two-way ANOVA. All statistical analysis was performed with SPSS 25.0. Detailed results are displayed in the supplementary information.

3. Results

3.1. Basic soil properties

Quantification of basic geochemical parameters in soils from different farming systems prior to incubation revealed significantly increased SOC content in BIOORG, followed by CONMIN and then NOFERT. Initial DOC did not show any effect of farming system, while pH and total N contents were significantly decreased in NOFERT (Table 1). Soil C/N ratio was significantly increased in BIOORG compared to NOFERT, while CONMIN did not differ significantly from the other treatments.

3.2. CO2, N2O and N2 fluxes

Across the incubation period, cumulative CO2 emissions were significantly enhanced in BIOORG compared to CONMIN. Cumulative CO2 emissions in NOFERT did not differ significantly from the other farming systems. After addition of NH4NO3, the greatest N2O fluxes appeared at 5 days with mean N2O emissions of 74.01 ± 23.47, 56.91 ± 2.90 and 42.79 ± 2.84 µg N2O-N kg dry soil−1 h−1 for BIOORG, NOFERT and CONMIN, respectively (Fig. 1A). Thereafter, N2O emission declined and reached stable levels after 11 days. In the last phase of incubation CONMIN showed significantly decreased N2O emissions at days 14 and 17 as compared to BIOORG and NOFERT. N2O emissions in NOFERT soil emerged slowly and after 2 days of incubation N2O emissions in NOFERT were significantly lower compared to CONMIN and BIOORG. From day 8 on, N2O emissions reached similar high levels like BIOORG. N2 emissions in NOFERT were detectable after 5 days of incubation but remained at constantly low levels throughout the incubation (Fig. 1B). In BIOORG and CONMIN, N2 emissions increased until day 8 and slightly declined thereafter. Highest N2 emissions occurred at the end of incubation reaching 24.02 ± 6.40, 24.25 ± 3.35 and 7.44 ± 1.07 µg N2-N kg dry soil−1 h−1 in BIOORG, CONMIN and NOFERT, respectively (Fig. 1B). N2O/(N2O + N2) product ratio constantly declined in BIOORG and CONMIN but remained at high levels throughout the incubation time in NOFERT (Fig. 1C). At days 2, 8, 11 and 17 the N2O/(N2O + N2) product ratios were significantly higher in BIOORG compared to CONMIN meaning that significantly lower portion of N2O was further reduced to N2. This resulted in distinct N2O/(N2O + N2) product ratios of cumulated fluxes for the different soils that decreased in the order NOFERT, BIOORG to CONMIN (Table 2). Yet, cumulated NO3 derived N2O emissions were the highest for BIOORG (16.18 ± 1.66 mg N2O-N kg−1) followed by NOFERT (13.87 ± 0.46 mg N2O-N kg−1) and the lowest in CONMIN (9.59 ± 0.15 mg N2O-N kg−1) (Table 2). Interestingly, cumulated N2

Table 1

<table>
<thead>
<tr>
<th></th>
<th>BIOORG</th>
<th>CONMIN</th>
<th>NOFERT</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH (H2O)</td>
<td>6.13 ± 0.02</td>
<td>6.15 ± 0.03</td>
<td>5.54 ± 0.04</td>
</tr>
<tr>
<td>DOC (mg C kg−1)</td>
<td>36.00 ± 1.60</td>
<td>34.09 ± 1.75</td>
<td>32.14 ± 2.17</td>
</tr>
<tr>
<td>SOC (g kg−1)</td>
<td>14.15 ± 0.05</td>
<td>13.66 ± 0.05</td>
<td>11.74 ± 0.08</td>
</tr>
<tr>
<td>Total N (g kg−1)</td>
<td>1.70 ± 0.01</td>
<td>1.72 ± 0.06</td>
<td>1.65 ± 0.03</td>
</tr>
<tr>
<td>C/N</td>
<td>8.33 ± 0.01</td>
<td>7.94 ± 0.25</td>
<td>7.11 ± 0.13</td>
</tr>
</tbody>
</table>

Abbreviations: DOC – dissolved organic carbon; SOC – soil organic carbon.
emissions did not differ between BIOORG and CONMIN but were significantly lower in NOFERT (Table 2).

3.3. N transforming processes

Generally, NO\textsubscript{3} reduction was the dominating N transforming process in all soils. Across the whole incubation period 21.00 ± 0.24 mg of NO\textsubscript{3}-N kg-1 was consumed in BIOORG followed by CONMIN (18.44 ± 0.24 mg NO\textsubscript{3}-N kg-1) and NOFERT (15.33 ± 0.37 mg NO\textsubscript{3}-N kg-1) (Table 2). Cumulated gross NO\textsubscript{3} consumption was significantly increased in BIOORG from day 11 on, while cumulated gross NO\textsubscript{3} consumption in NOFERT was significantly lower at day 17 (Fig. 2A). For BIOORG and NOFERT the sum of cumulated N\textsubscript{2} and N\textsubscript{2}O fluxes (20.59 and 15.82 mg N kg-1, respectively) was in good agreement with gross NO\textsubscript{3} consumption, whereas in CONMIN N\textsubscript{2}+N\textsubscript{2}O fluxes were significantly lower (14.40 mg N) compared to gross NO\textsubscript{3} consumption (Table 2). Nitrification in CONMIN started slowly and cumulated nitrification was significantly lower after 2 days of incubation compared to NOFERT and BIOORG. Yet, from day 14 on, cumulative nitrification was the highest in CONMIN. Significantly lower cumulated nitrification was observed in NOFERT from day 8 on (Fig. 2B).

3.4. Gene and transcript abundances of denitrifying genes

Abundances of functional genes involved in NO\textsubscript{2} reduction (\textit{nirK}, \textit{nirS}) did not show strong variations within the incubation period and were not influenced by the farming system (Fig. 3A and C). Only NOFERT showed significantly reduced abundances for \textit{nirS} gene at day 11 and \textit{nirK} gene at day 8 and 11. Generally \textit{nirS} gene abundance exceeded \textit{nirK} gene abundance by around one order of magnitude. In terms of \textit{nirS} and \textit{nirK} gene expression little differences were observed between farming systems (Fig. 4A and C). Gene expression of both nitrite reductases increased after fertilization in the beginning of the incubation. While \textit{nirK} transcripts increased by almost one order of magnitude in CONMIN and NOFERT, increase in \textit{nirS} transcripts was only 2–3 fold. Gene copy numbers of nos\textit{Z-II} and nos\textit{Z-II} were stable during incubation (Fig. 3B and D). Significant differences between soils were detected for nos\textit{Z} abundance at day 8 and 11 with the lowest gene abundances in NOFERT. Nos\textit{Z-II} gene abundance was the lowest in CONMIN at all sampling points, although this was not significant. Transcription of nos\textit{Z-II} and especially nos\textit{Z} fluctuated strongly during incubation (Fig. 4B and D). Directly after fertilization the transcripts of nos\textit{Z} increased by almost one order of magnitude in all soils and reached a first peak after 2 days of incubation. Thereafter, expression declined in all farming systems at day 5 and stayed at stable levels in CONMIN. Significantly increased nos\textit{Z} transcripts in CONMIN could be observed during increasing N\textsubscript{2}O emissions until day 5. In that period N\textsubscript{2}O emissions and nos\textit{Z} transcripts correlated negatively with N\textsubscript{2}O emissions across all soils \((r^2 = 0.81)\) (Fig. S2). Nos\textit{Z} transcripts in NOFERT and BIOORG peaked a second time at day 11 and were higher compared to CONMIN although this was only significant for BIOORG. For nos\textit{Z-II} no transcripts were detectable until day 2 in CONMIN and BIOORG and day 5 in NOFERT. Afterwards, transcripts increased and peaked at day 8 in CONMIN and at day 11 in BIOORG and NOFERT (Fig. 4B and D). However, no farming system effects were detected for transcripts of nos\textit{Z-II}.

4. Discussion

4.1. Geochemistry of the microcosms and N transforming processes

At the beginning of the experiment microcosms were fertilized with 11 mg N as NH\textsubscript{4}NO\textsubscript{3} in correspondence to a moderate fertilization event in the field of 40 kg N ha-1. Despite differing fertilization history, all soils were treated equally in order to assess long-term impact of farming systems on N transformations. Chosen incubation conditions (WFPS of 90%) aimed at favoring denitrification, but occurrence of nitrification proved partial availability of oxygen. This was expected as incubated soil samples were open to the atmosphere and soil pores were not completely water
the oxygenation status of the soil was reported to be the major control of N2O emission on a regional scale (Jungkunst et al., 2006).

As distinct SOC contents presented a major distinguishing factor for soils from the different farming systems, no additional C was added during fertilization. Constant bacterial abundances as indicated by stable 16S rRNA gene numbers indicated limited bacterial growth and suggests C-limiting conditions in our setup (Fig. S5). Nevertheless, significantly increased CO2 emissions in BIOORG compared to CONMIN demonstrate enhanced heterotrophic activity as a consequence of long term organic fertilization and elevated SOC levels (Table 2). This is in agreement with the studies of Hartmann et al. (2014) and Carpenter-Boggs et al. (2000) where increased soil microbial activity and/or abundance in organically managed soil had been described.

Nitrifiers can contribute to N2O emission directly via NH2OH oxidation and nitrifier denitrification and indirectly through NO3- provision for denitrification (Wrage et al., 2001). The occurrence of nitrification in our setup was not surprising as NH4+-oxidation and NO3- reduction processes can co-occur over a wide range of soil moisture conditions (Kool et al., 2011). Although the occurrence of nitrification (and possibly nitrifier denitrification) was proven, the contribution of this pathway to N2O emission seemed negligible as NO3- derived N2O emissions accounted for ~95% of N2O emission in all soils. Similarly, Kool et al. (2011) ascribed ~92% of N2O emissions to denitrification at a WFPS of 90%.

For the calculation of nitrification and NO3- consumption rates and NO3- derived N2O and N2 emissions with the stable isotope approach homogeneous distribution of the added tracer and negligible N recycling within the incubation time must be assumed (Stark, 2000). The latter point was addressed by limiting incubation intervals to 72 h. Nevertheless, our approach might have overestimated N transformation rates since we could not account for N immobilization within an incubation interval. Although in our case a high WFPS assisted in uniform distribution of the added tracer, assuring homogenous labeling can only be approximated (Stark, 2000). The latter point was addressed by limiting incubation intervals to 72 h. Nevertheless, our approach might have overestimated N transformation rates since we could not account for N immobilization within an incubation interval. Although in our case a high WFPS assisted in uniform distribution of the added tracer, assuring homogenous labeling can only be approximated (Stark, 2000). The latter point was addressed by limiting incubation intervals to 72 h. Nevertheless, our approach might have overestimated N transformation rates since we could not account for N immobilization within an incubation interval. Although in our case a high WFPS assisted in uniform distribution of the added tracer, assuring homogenous labeling can only be approximated (Stark, 2000).
The main goal of this incubation study was to assess the long term impact of farming system on soil’s potential to perform N$_2$O production and reduction within the process of denitrification. Generally, N$_2$ production was low compared to other studies focusing on denitrification end products. In-situ measurements of N$_2$O/(N$_2$O + N$_2$) product ratios were reported not to exceed 0.45 (Baily et al., 2012; McGeough et al., 2012; Friedl et al., 2016). Nevertheless, N$_2$O/(N$_2$O + N$_2$) product ratios are known to be largely dependent on the relative availabilities of C and NO$_3$ (Senbayram et al., 2009, 2012; Morley and Baggs, 2010) and N$_2$O/(N$_2$O + N$_2$) product ratios of up to 0.94 were reported in an incubation experiment under C limiting conditions with NO$_3$ excess (Senbayram et al., 2012). Most likely this was the case in our study where high NO$_3$ concentrations reduced the relative importance of N$_2$O reduction and shifted dominating denitrification end product towards N$_2$ (Fig. S1). It might also be that O$_2$ was allowed to penetrate in the soil column, inhibiting functionality of the nitrous oxide reductase. However, this seems unlikely since in a recent incubation study it was observed that N$_2$O reduction was not inhibited after addition of low molecular C sources at a WFPS of 90% (Giles et al., 2017).

In accordance with enhanced NO$_3$ consumption in BIOORG, other studies demonstrated long term addition of farmyard manure to increase denitrification rates (Tatti et al., 2013) as well as N$_2$O emissions after NH$_4$NO$_3$ application (Jäger et al., 2013). Yet, quantification of N$_2$ additionally revealed N$_2$O reduction to play a key role affecting total N$_2$O budgets. Lowest N$_2$O emissions in CONMIN cannot solely be assigned to decreased NO$_3$ consumption but also to hight N$_2$ production. This is reflected by the significantly lowest N$_2$O/(N$_2$O + N$_2$) product ratio at most time points of sampling and proved most efficient reduction of N oxides during the subsequent denitrification steps in CONMIN. There are two possible explanations how legacy of farming systems might have affected N$_2$O/(N$_2$O + N$_2$) ratios in CONMIN and BIOORG. First, lower SOC levels in CONMIN compared to BIOORG might have reinforced C limitation and shifted denitrification end product towards N$_2$. Additionally, it needs to be considered that fertilization history of CONMIN is characterized by repeated fertilization with NH$_4$NO$_3$ without C addition. Therefore, adaptation of the denitrifying community to reoccurring conditions might have led to most efficient use of provided N oxides under C-limiting conditions. Latter hypothesis is supported by significantly increased nosZ expression in CONMIN in the beginning of incubation.

It is also known that pH can greatly impact N$_2$O/(N$_2$O + N$_2$) ratios (Cuhel et al., 2010). Most likely low pH was the main driver for high N$_2$O/(N$_2$O + N$_2$) ratios in NOFERT. In this farming system constant low N$_2$ production was observed, although expression of nosZ and nosZ-II genes was similar to BIOORG. The study of Bergaust et al. (2010) showed that acidic conditions below a pH of 6 impedes correct folding and thus functioning of the nitrous oxide reductase as a post-transcriptional effect in Paracoccus denitrificans. Liu et al.
demonstrated that pH-induced dysfunctional assembly of the nitrous oxide reductase can affect whole communities. Since NOFERT did not receive any liming treatment throughout its management history since 1978, pH was significantly lower and most likely under the functional threshold that enables correct folding of the N₂O reductase. The agricultural practice of maintaining pH above 6 should therefore be considered as an important part of climate friendly farming systems. Unlike CONMIN, BIOORG also did not receive liming treatment throughout the management of the field trial. Nevertheless the pH stayed constant and the functionality of the nitrous oxide reductase was not inhibited. This suggests organic farming systems maintain functionality of N₂O reductase more effectively in the long run compared to conventional farming systems. Although NO₃/C₀ consumption and N₂O emissions were enhanced due to increased SOC levels in BIOORG, increased N₂O fluxes in the field in organic farming systems seem unlikely considering the anomalous addition of NO₃ in our setup. In fact, a recent meta study showed organic farming systems to decrease area scaled N₂O emissions due to lower inputs of available N (Skinner et al., 2014).

4.3. Influence of denitrifier abundance and activity on N₂O emission dynamics

The approach of predicting microbial processes with functional gene or transcript abundance is currently under debate as correlations between process rates and functional gene or transcript abundances are often missing (Bier et al., 2015; Rocca et al., 2015). In terms of denitrification, functional gene and transcript abundances had been studied extensively with variable results. While there are examples for studies that could successfully link denitrifier gene and/or transcript copies with N₂O emissions (Morales et al., 2010; Tatti et al., 2013; Harter et al., 2014; Chen et al., 2015), in other studies significant relations were missing (Miller et al., 2009; Henderson et al., 2010; Dandie et al., 2011). Therefore, experimental conditions need to be evaluated carefully for each experiment before comparing molecular data with process rates. In our case, C limitation most likely hampered growth of heterotrophic denitrifiers and thus differentiation of functional gene abundance in between farming systems was negligible. Consequently, mRNA analysis as a measure for functional activity becomes more important when comparing the impact of farming systems on denitrifying communities. Expression of nirK and nirS genes was rather stable, while nosZ and nosZ-II transcription levels fluctuated throughout the incubation time. This suggests increased susceptibility of nosZ and nosZ-II regulation to environmental factors compared to genes involved in nitrite reduction. Nevertheless, it needs to be noted that the primers used to quantify nirK and nirS genes only detect alpha-, beta- and gammaproteobacteria and other phylogenetic groups involved in nitrite reduction that were not accounted for in our analysis can significantly contribute to N₂O emissions (Wei et al., 2015). Still,

Liu, B., Frostegard, A., Bakken, L.R., 2014. Impaired reduction of N2O to N2 in acid soils is due to a posttranscriptional interference with the expression of nosZ. Science 343, 8338–8314. http://dx.doi.org/10.1126/science.1233831-14.

