#### CO2-eq-emissions of organic and conventional foodstuffs in Austria

and

#### CO2\_Labeling-Project 100 organic products on a supermarket level

DI Bettina Brandtner; Federal Ministry of Agriculture, Forestry, Environment and Water Management

Dr. Thomas Lindenthal; Research Institute of Organic Agriculture (FiBL) Austria

## **Conference on Climate Smart Food**

23-24 November 2009 in Lund, Sweden



Project commissioned by:

- Austrian BMLFUW

- W. Lampert Beratungsges.m.b.H. "Zurück zum Ursprung" / Hofer KG

Duration: 2 years (since July 2008)

#### **Review**:

- Öko-Institut Freiburg

- Research Institute of Organic Agriculture (FiBL) Switzerland

Internet-Link to the Project:

http://www.fibl.org/de/oesterreich/schwerpunkte-at/klimaschutz.html





#### **Objectives of the project**

- to compare the greenhouse gas emissions (CO2 eq) of organic/ecological foodstuffs, with foodstuffs grown conventionally,
- 2. to render the results visible for the consumer.
- The balanced organic and conventional foodstuffs are **retail products**.
- → the processing and marketing of the products takes place on the level of nationwide supermarket companies.



120 foodstuffs were/are being balanced:

- dairy products
- bread products,
- eggs, poultry
- fruit, vegetables, fruit juices

in 3 categories:

- a) Organic premium line, "Zurück zum Ursprung" Back to the origin <u>(Bio ZZU)</u>
- b) Organic EU standard (Bio\_EU)
- c) Traditional (conventional) foodstuffs (KONV)



## Methods

- ⇒ CO2-balance as a "Life cycle assessment" (LCA) according to the guidelines of the IPCC (2007)
- ⇒ a climate assessment model was developed
- ⇒ was based strictly on the international eco-balance guidelines (ISO 14040 and 14044)
- ⇒ along the entire supply chain, from the agricultural production including intermediate production, over the processing, packaging, storage to the retail of the product and the individual supermarket branches.
- ⇒ external review: Ökoinstitut Freiburg and FiBL Schweiz



#### Methods

#### The greenhouse gases included are:

- ➡ CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, which were calculated in the form of **"CO<sub>2</sub>-equivalents" (CO<sub>2</sub>-eq)** (Climate-affecting-factor of CH<sub>4</sub>: 23; climate-affecting-factor of N<sub>2</sub>O<sub>2</sub>: 298).
- $\Rightarrow$  The balances were compiled using the program SIMA PRO 7.1.
- Detailed primary data in the areas of agriculture, transport, processing, packaging and distribution were accessed from the Austrian supermarket corporation HOFER KG's organic product line, "Zurück zum Ursprung".
- ⇒ it was possible to calculate an Austria-specific "supermarket standard" for transport, processing, packaging and distribution.



#### Methods

#### secondary data

- ⇒ databases GEMIS 4.42 and ECOINVENT,
- ⇒ secondary data from approx. 200 national and international publications and 20 Austrian and international statistics
- ⇔ current national and international literature regarding CO2-Balance evaluation
- → it was possible to take the specific production conditions in Austria, as well as the current level of knowledge about CO2-balance evaluation and land use change into consideration.



#### categories of supply chain





# Consideration of effects which have so far recieved little attention

- Land Use Change: Consideration of the destruction of savannas and tropical land through soja cultivation (over 90% of soja used for animal feed in Austria is imported from Brazil).
- $\rightarrow$  main reason for CO<sub>2</sub>-saving from organic **milk products**
- 2. Humus accumulation through organic/ecological agriculture



#### **Results - Examples**



Organic products (Bio-ZZU and BIO EU) constantly display lower CO2-eq-Emissions than comparable, conventional products:

• Dairy products: 10 - 21% lower CO2-eq-emissions (based on 1 kg of the product)

• bread and breasd products: 17-45% lower CO2-eqemissions (based on 1 kg of the product)

• Vegetables: 10-35 % lower CO2-eq-emissions (based on 1 kg of the product)



#### **Results: example wheat bread:**





#### **Results - example: Kohlrabi**



#### Results – example: Naturjoghurt 3,5 % Fett





#### **Further results - examples**



#### 1.) Role of transport

dairy products: 5-10% of total CO2-eq-emissions/kg product.

bread and bread products: 5-15%.

open-land vegetables: 20-50%.

In the case of transport, it is important to consider the efficiency of the transport means (advantages in transport with ships and large trucks compared with small trucks).

#### 2.) Avoidance of convenience

www.fibl.org

• An important CO2-saving effect in foodstuff processing is the avoidance of convenience, for example the freezing and rebaking of dough pieces in the production of bread(rolls):

 $\rightarrow$  increases the CO2-saving from 17-25% to over 40%



## Internet links to the project results:



http://www.fibl.org/de/oesterreich/schwerpunkteat/klimaschutz.html

http://www.zurueckzumursprung.at/co2-fussabdruck/co2-ihresproduktes

Lindenthal, T., Markut, T., Hörtenhuber, S., Rudolph, G. (2009): CO2-eqemissions of organic and conventional foodstuffs in Austria - Results summary of 74 CO2-balanced products. Executive summary. http://www.fibl.org/de/oesterreich/schwerpunkte-at/klimaschutz.html

