Advantages of cultivating cotton organically

<table>
<thead>
<tr>
<th></th>
<th>Conventional Cotton</th>
<th>Organic Cotton</th>
</tr>
</thead>
</table>
| **Environment** | • Pesticides kill beneficial insects
 • Pollution of soil and water
 • Resistance of pests | • Increased bio-diversity
 • Eco-balance between pests and beneficial insects
 • No pollution |
| **Health** | • Accidents with pesticides
 • Chronic diseases (cancer, infertility, weakness) | • No health risks from pesticides
 • Healthy organic food crops |
| **Soil fertility** | • Risk of declining soil fertility due to use of chemical fertilizers and poor crop rotation | • Soil fertility is maintained or improved by organic manures and crop rotation |
| **Market** | • Open market with no loyalty of the buyer to the farmer
 • Dependency on general market rates
 • Usually individual farmers | • Closer relationship with the market partner.
 • Option to sell products as ‘organic’ at higher price
 • Farmers usually organized in groups |
| **Economy** | • High production costs
 • High financial risk
 • High yields only in good years | • Lower costs for inputs
 • Lower financial risk
 • Satisfying yields once soil fertility has improved |
Successful organic cotton farming with a system approach

- Capacity building and experimenting
- Improving soil fertility
- Crop rotation & crop diversity
- Selecting the right cotton varieties
- Organic manures
- Appropriate irrigation
- Appropriate pest management
- Timely weeding and intercult. operations
- Monitoring of pests
- Timely and proper picking
- Documentation and inspection

FiBL

Organic Cotton Training Manual
Organic standards in cotton farming

- No application of any synthetic fertilizers such as urea, NPK, DAP etc.
- No application of synthetic pesticides (including herbicides, insecticides, fungicides) or growth promoters.
- No use of genetically modified organisms (GMO) such as Bt-cotton varieties.
- Crop rotation (no cotton after cotton in the same field in two subsequent years) and/or intercropping.
- Prevent spray drift from neighbouring conventional fields, e.g. by growing border crops.
- Maintain records and documents for inspection and certification.
Internal control and external certification – building trust

External Certifier

- Consumers
- Retail
- Processing & Trade

Internal Control System (ICS)

Trust

(adapted from IFOAM)
Requirements of the cotton crop

Ideal climatic conditions
- High temperature (ideally 30°C)
- Long vegetation period
- Ample sunshine
- Dry climate
- Min. 500 mm rainfall or irrigation

Ideal soil conditions
- Deep soils
- Heavy clay soils, ideally black cotton soils (vertisols)
- No water logging

Crop development
- Strong root growth in first two weeks
- Natural bud shedding (only approx. 1/3 of flowers develop bolls)
- Plant compensates for damage through increased growth
Selecting the right cotton varieties

American Upland cotton (G. hirsutum)

- **Advantages:**
 - High yields
 - Longer staple (higher price)
- **Disadvantages:**
 - Needs more water
 - Needs more manure
 - More prone to pests

Indian ‘desi’ varieties (G. arboreum, G. herbaceum)

- **Advantages:**
 - Better drought resistance
 - More pest tolerant
- **Disadvantages:**
 - Smaller yields
 - Mostly shorter staple (lower price)

Suitable for:
- Deep soils
- Heavy soils
- Good irrigation

<table>
<thead>
<tr>
<th>Suitable for:</th>
<th>Suitable for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep soils</td>
<td>Shallow soils</td>
</tr>
<tr>
<td>Heavy soils</td>
<td>Sandy soils</td>
</tr>
<tr>
<td>Good irrigation</td>
<td>Little/no irrigation</td>
</tr>
</tbody>
</table>
Soil types and their management

<table>
<thead>
<tr>
<th>Light soils</th>
<th>Heavy soils</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shallow; roots do not penetrate very deeply</td>
<td>Deep; roots penetrate deeply</td>
</tr>
<tr>
<td>Light colours</td>
<td>Dark colour; cracks when dry</td>
</tr>
<tr>
<td>Sandy; easy to cultivate</td>
<td>Rich in clay; muddy when wet, hard when dry</td>
</tr>
<tr>
<td>Low water retention capacity → affected by drought!</td>
<td>High water retention capacity → less risk of being affected by drought</td>
</tr>
<tr>
<td>Nutrients easily get leached out → need sufficient compost; supply of mineral fertilizers in several doses</td>
<td>Very fertile → need sufficient manures because of high productivity</td>
</tr>
<tr>
<td>Drought-resistant crops: sorghum, maize, pigeon pea (desi varieties), moong, millet, castor; desi cotton varieties</td>
<td>High performance crops: chilli, soya bean, banana, sugarcane, hybrid cotton varieties, pigeon pea (hybrid varieties); wheat</td>
</tr>
<tr>
<td>Intercrop to reduce risk of crop failure</td>
<td>Intensive crop rotation; green manures</td>
</tr>
<tr>
<td>Compost and mulching to improve water holding and nutrient supply</td>
<td>Compost to activate soil life and improve soil structure</td>
</tr>
<tr>
<td>Shallow ploughing, little soil cultivation</td>
<td>Deep ploughing, frequent intercultural operations (shallow soil cultivation)</td>
</tr>
<tr>
<td>Increase infiltration with trenches and bunds</td>
<td>Risk of waterlogging!</td>
</tr>
</tbody>
</table>
Why organic matter is so important

A loose and soft soil structure with a lot of cavities

Good aeration and good infiltration of rain and irrigation water

Non-visible parts of organic matter act like a glue, sticking soil particles together

Visible parts of organic matter act like tiny sponges

Many beneficial soil organisms such as earth worms feed on organic material

Soil organic matter provides a suitable environment for soil organisms
Crop rotation – rotation crops

<table>
<thead>
<tr>
<th>Rotation Type</th>
<th>1st year</th>
<th>2nd year</th>
<th>3rd year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulses + cereals</td>
<td>Cotton (winter crop: wheat or pulses)</td>
<td>Pulses (soya, moong beans, cow pea, black gram, pigeon pea), maize or sorghum</td>
<td>Cotton (winter crop: wheat or pulses)</td>
</tr>
<tr>
<td>Vegetable</td>
<td>Cotton (winter crop: wheat or pulses)</td>
<td>Chilli, onion or other intensive vegetable crop</td>
<td>Cotton (winter crop: wheat or pulses)</td>
</tr>
<tr>
<td>Sugar cane</td>
<td>Cotton</td>
<td>Sugar cane</td>
<td>Sugar cane</td>
</tr>
<tr>
<td>Diverse rotation (from Tanzania)</td>
<td>Cotton</td>
<td>Sesame, safflower, sorghum or maize</td>
<td>Pulses (moong, chick pea, cow pea, pigeon pea, groundnut)</td>
</tr>
<tr>
<td>Rotation with herbal plants (from Egypt)</td>
<td>Cotton (winter crop: wheat or pulses)</td>
<td>Herbs (anise, basil, fennel etc.)</td>
<td>Maize with clover intercrop</td>
</tr>
</tbody>
</table>
Green manures and intercrops

Green manure

- Sowing the green manure crop
- Mulching the green manure crop

Intercrop

- Sowing the intercrop
- Harvesting the intercrop
Timing of nutrient supply in the cotton crop

- **Basal application**
- **Top dressing**
- **First flowering**
- **Boll formation**
- **First picking**
- **Continuous picking**
- **Second flush**
- **Uprooting**

Nutrient Demand
- **Demand fully covered**
- **Demand partly covered**

Nutrient Supply

- **Maximum demand**

Time

Plant Nutrient Demand and Supply
Disturbance of nutrient uptake

- Lack of water
- Oversupply of nutrients: Too much N, P, K prevent the uptake of Ca, Mg, Fe, Zn etc.

Nutrients:
- N
- P
- K
- Mg
- Ca
- S
- Fe
- Zn

Water-logging

Mineral Particles

Soil Organic Matter
Nitrogen immobilisation in soil → retarded growth

Symptoms
- Yellowish leaves
- Stunted growth
- Delayed development

The reason
Decomposable material in the soil (half rotten compost or manure, straw, crop residues)

The decomposition of carbon-rich organic material requires nitrogen

Little organic material with high nitrogen content (e.g. oil cake)

Preventive measures
- Remove sturdy crop residues (stalks) from the field and compost them
- Ensure that the compost is well decomposed
- Apply compost at least two weeks before sowing
- Apply sufficient nitrogen-rich organic manures (e.g. de-oiled cakes)
- Note: Organic manures need 1-3 weeks until they release nitrogen
- Shallow soil cultivation helps to accelerate decomposition of organic matter
Organic manures and natural mineral fertilizers for cotton

<table>
<thead>
<tr>
<th>Manure/Fertilizer</th>
<th>Comment</th>
<th>Nitrogen (total N)</th>
<th>Phosphate (P_2O_5)</th>
<th>Potash (K_2O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compost</td>
<td>Soil improvement</td>
<td>0.6 - 1.5 %</td>
<td>0.5 - 1.0 %</td>
<td>0.5 - 2.0 %</td>
</tr>
<tr>
<td>Farmyard manure</td>
<td>Less stable humus</td>
<td>0.7 - 1.5 %</td>
<td>0.5 - 0.9 %</td>
<td>0.4 - 1.5 %</td>
</tr>
<tr>
<td>Vermi-compost</td>
<td>Very stable humus</td>
<td>0.6 - 1.5 %</td>
<td>0.4 - 0.9 %</td>
<td>0.5 - 1.0 %</td>
</tr>
<tr>
<td>De-oiled Castor</td>
<td>N- and P-supply</td>
<td>4.5 - 6.0 %</td>
<td>0.8 - 1.8 %</td>
<td>1.3 - 1.5 %</td>
</tr>
<tr>
<td>Cane press mud</td>
<td>Soil improvement</td>
<td>1.4 - 1.8 %</td>
<td>0.1 - 1.0 %</td>
<td>0.4 - 0.6 %</td>
</tr>
<tr>
<td>Rock phosphate</td>
<td>P-supply, in compost heap</td>
<td>0</td>
<td>15 - 30 %</td>
<td>0</td>
</tr>
<tr>
<td>Muriate of potash</td>
<td>Natural potassium fertilizer</td>
<td>0</td>
<td>0</td>
<td>ca. 60 %</td>
</tr>
<tr>
<td>Wood ash</td>
<td>K, Mg, Ca, Mg etc.</td>
<td>0</td>
<td>1 - 3 %</td>
<td>1 – 8 %</td>
</tr>
</tbody>
</table>

Note: Figures are given in percent of dry matter. The nutrient contents vary from source to source.
Compost and farmyard manure – proper handling pays off!

Nutrient contents of different compost and dung heaps collected in the Nimar region, India

<table>
<thead>
<tr>
<th>Manure / Compost type</th>
<th>Nitrogen (total N)</th>
<th>Phosphate (P$_2$O$_5$)</th>
<th>Potash (K$_2$O)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cow dung heap, well maintained</td>
<td>1.5%</td>
<td>0.7%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Cow dung heap, poorly maintained (too wet)</td>
<td>0.9%</td>
<td>0.5%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Compost in good condition (with heat process and turning)</td>
<td>1.3%</td>
<td>0.9%</td>
<td>0.8%</td>
</tr>
<tr>
<td>Compost, poorly maintained (too dry)</td>
<td>0.8%</td>
<td>0.5%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Vermi-compost in good condition</td>
<td>1.5%</td>
<td>0.9%</td>
<td>0.7%</td>
</tr>
<tr>
<td>Vermi-compost, poorly maintained</td>
<td>0.6%</td>
<td>0.4%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>
Setting up a compost heap

Collect the composting material.

• Choose a shady location
• Collect plenty of plant material
• Pile it up separately
• Chop coarse material

Set up the heap from bottom:
• N-rich material
• Coarse C-rich material
• Twigs and branches

• Humidify the materials
• Pile them up loosely in layers
• Cover with earth or straw

Turn the heap
• after 2–3 weeks
• after 1-2 months

• When temperature declines.
• Outside material goes inside.

Let it rest to mature for up to 3 months.

soil layer
Nitrogen fixation through leguminous plants

- There is plenty of nitrogen in the air (78% nitrogen gas)
- Leguminous plants fix nitrogen from the air and make it available to the plant
- Examples: pigeon pea, soya bean, moong, cow pea, chick pea, daal etc.
- The fixation is done by bacteria living in root nodules (*Rhizobium* species)
- The nitrogen fixed by the leguminous crop gets available to the associated or following crop (e.g. cotton)
- If a lot of fertilizer is available in the soil, legumes fix less nitrogen
Keeping your cotton crop healthy

- Select a variety suitable for the location
- Diverse crop rotation
- Intercropping, green manure
- Not too much manure (tender leaves attract pests; vegetative growth instead of bolls)
- Encourage soil aeration (e.g. shallow hoeing)
- Balanced nutrition (compost, organic manures)
- Promote natural enemies of pests through diverse cropping patterns
- Enrich the soil with organic matter
- Avoid water shortage
- Avoid waterlogging (boll shedding, less yield)
- Diverse crop rotation

FiBL
Organic Cotton Training Manual
Important cotton pests

<table>
<thead>
<tr>
<th>Bollworms and other caterpillars</th>
<th>Sucking pests and other pests</th>
</tr>
</thead>
<tbody>
<tr>
<td>American bollworm (<i>Heliothis armigera</i>)</td>
<td>Cotton aphid (<i>Aphis gossypii</i>)</td>
</tr>
<tr>
<td>Cutworm (<i>Agrotis spp.</i>)</td>
<td>Spider mites (<i>Tetranychus spp.</i>)</td>
</tr>
<tr>
<td>Pink bollworm (<i>Pectinophora gos.</i>)</td>
<td>Grasshoppers (<i>Locusta spp.</i>)</td>
</tr>
<tr>
<td>Armyworm (<i>Spodoptera spp.</i>)</td>
<td>Whitefly (<i>Bemisia tabaci</i>)</td>
</tr>
<tr>
<td>Spiny Bollworm (<i>Earias spp.</i>)</td>
<td>Cotton jassids (<i>Amrasca devestans</i>)</td>
</tr>
<tr>
<td>Cotton leafworm (<i>Alabama argillacea</i>)</td>
<td>Thrips (<i>Thripidae</i>)</td>
</tr>
<tr>
<td>Cotton stainer (<i>Dysdercus spp.</i>)</td>
<td>Root knot nematodes (<i>Meloidogyne spp.</i>)</td>
</tr>
</tbody>
</table>

Photos (top left to bottom right): Paolo Mazzei, Clemson University, Roland Smith, Mississippi State University, James Smith, Winfield Sterling, Douglas Ferguson, Insectcorner, P. Room, Scott Bauer, Cotton SA, University of Georgia, Frank Eyhorn, Insectcorner, Clemson University
Pest management in cotton

<table>
<thead>
<tr>
<th>Pest</th>
<th>Preventive measures</th>
<th>Direct control measures</th>
</tr>
</thead>
</table>
| **Bollworms (Helicoverpa and others)** | - Trap crops: sunflower, okra, castor
- Hand-pick damaged capsules
- Encourage natural enemies
- Remove cotton stalks
- Cattle grazing after picking is over | - Bt-spray, NPV spray
- Neem, botanical preparations
- Buttermilk spray
- Pheromone traps, light traps
- Trichogramma cards |
| **Aphids, jassids, thrips, whitefly (Bemisia)** | - Intercrop of moong, cow pea etc.
- Avoid high manure application
- Avoid waterlogging and water shortage
- Promote natural enemies by growing flowering plants | - Neem, botanical preparations (chilli, sweet flag, turmeric etc.)
- Soft soap spray
- Cow urine spray
- Potato starch spray
- Yellow sticky traps |
| **Cotton stainers (Dysdercus)** | - Frequent soil cultivation to destroy the eggs (also along field borders)
- Encourage birds (turmeric-coloured rice, bird perches, trees)
- Avoid stand-over of cotton | - Pyrethrum spray
- Botanical sprays (neem, custard apple, garlic bulb, sweet flag, sweet basil, Derris species)
- Grazing of chickens |
| **Cutworms (Agrotis and other species)** | - Early soil cultivation
- Remove weeds in and around fields
- Encourage birds, spiders etc. (bird perches, trees, hedges) | - Apply neem cake into the soil
- Pyrethrum, Derris or thyme spray
- Cutworm baits
- Hand picking or Bt-spray at night |
Natural enemies of major cotton pests

- **Parasitoids** (e.g. parasitic wasps)
- **Green lacewing** (*Chrysoperla spp.*)
- **Damsel bug** (*Nabis spp.*)
- **Ladybird beetle** (*Harmonia spp.*)
- **Hoverfly** (*Eristalis spp.*, *Volucella spp.*)
- **Bollworms**
- **Aphids**
- **Cutworms**
- **Assassin bugs** (*Prithesancus spp.*)
- **Ants**
- **Big-eyed bugs** (*Geocoris spp.*)
- **Spiders**
- **Birds**

Photos: left: WURL, Insectcorner (3), J.K. Lindsey; middle: Paolo Mazzei, Roland Smith, Clemson University; right: Joseph Berger, Bradley Higbee, University of Tennessee (2), Olivier Olgiati
Direct pest management methods

Biological control
- Trichogramma cards (parasitic wasp)
- Bt-spray (Bacillus thuringensis)
- NPV (Nuclear polyhedrosis virus)
- Beauvaria bassiana (fungus)

Natural pesticides
- Neem
- Botanical mixtures
- Buttermilk spray
- Soft soap spray

Mass trapping
- Light traps
- Sticky traps
- Pheromone traps
Monitoring pests - Economic threshold

Scouting for pests with the pegboard

Pest control only if pest populations are beyond the economic threshold

(Graphics: gtz-IPM Project Shinyanga, Tanzania)
Soil cultivation and weed management

Preparing the field
- Early ploughing to expose pests to the sun
- Earthing up ridges
- Soil cultivation speeds up the decomposition of organic matter

Sowing
- Appropriate spacing
- 2-4 seeds per spot
- Gap filling with trap crops
- Timely thinning

Weed management
- Crop rotation prevents weeds
- Weeds can also be beneficial
- Timely intercultural operations
Low-cost drip irrigation in cotton

- Normal drip system (approx. 1100 US$ per ha)
- “Easy Drip” system (approx. 400 US$ per ha)
- “Pepsee” drip system (approx. 220 US$ per ha)
The cotton processing chain

- Picking
- Storing
- Selling
- Ginning
- Cleaning
- Collecting
- Baling
- Spinning
- Fabric formation
- Retail
- Stitching
- Dying/Finishing

Photos: Remei AG
Strategies in organic cotton farming

Strategy I: Intensive organic
- High yields, but relatively high production costs
- High loss in case crop fails

Strategy II: Low input, low risk
- Smaller yields, but also lower production costs, thus still good income
- Lower loss in case crop fails
Farming intensities in conventional and organic cotton production

- **High input conventional**
- **Low input conventional**
- **Traditional, not certifiable**
- **High input organic**
- **Low input organic**
- **Traditional, certifiable**
- **“Organic by default”**

Conversion paths:
- **usual conversion path**
- **minor conversion path**

Intensities of production:
- **Conventional Agriculture**
- **Organic Agriculture**
Success factors in the conversion to organic cotton farming

Getting ready

- Adequate training in organic agriculture and organic cotton production
- Involve the family in decision making
- Develop strategies to cope with initial drop in yields and higher labour requirement
- Competent and timely advice on organic crop management
- Regular exchanges with experienced organic farmers

Adapting the production system

- Try out organic technologies on small plots to gain experience
- Identify suitable crop rotation, green manures and intercrops
- Ensure sufficient input of organic matter (if necessary from outside the farm)
The role of women in organic cotton farming

Impact on women
- Work load
- New activities
- Food crops

Support to women
- Training on organic farming
- Learning new skills

Involvement of women
- Decision making
- Role sharing
- Experience sharing
- Forming of women’s groups